Calculus Volume 1

Chapter 5 | Integration

545

−2 3

74.

83. ∫

(3− | x |) dx

In the following exercises, use averages of values at the left ( L ) and right ( R ) endpoints to compute the integrals of the piecewise linear functions with graphs that pass through the given list of points over the indicated intervals. 84. {(0, 0), (2, 1), (4, 3), (5, 0), (6, 0), (8, 3)} over [0, 8]

{(0, 2), (1, 0), (3, 5), (5, 5), (6, 2), (8, 0)} over

85.

[0, 8]

{(−4, −4), (−2, 0), (0, −2), (3, 3), (4, 3)} over

86.

75.

[−4, 4]

{(−4, 0), (−2, 2), (0, 0), (1, 2), (3, 2), (4, 0)}

87.

over [−4, 4]

Suppose that ∫ 0 4

f ( x ) dx =5 and ∫ 0 2

f ( x ) dx =−3, and

4 g ( x ) dx =−1 and ∫ 0 2

g ( x ) dx =2. In the following

0

exercises, compute the integrals.

4

88. ∫

⎛ ⎝ f ( x )+ g ( x ) ⎞

⎠ dx

In the following exercises, evaluate the integral using area formulas. 76. ∫ 0 3 (3− x ) dx 77. ∫ 2 3 (3− x ) dx 78. ∫ −3 3 (3− | x |) dx 79. ∫ 0 6 (3− | x −3|) dx 80. ∫ −2 2 4− x 2 dx 81. ∫ 1 5 4−( x −3) 2 dx 82. ∫ 0 12 36−( x −6) 2 dx

0

4

89. ∫

⎛ ⎝ f ( x )+ g ( x ) ⎞

⎠ dx

2

2

90. ∫

⎛ ⎝ f ( x )− g ( x ) ⎞

⎠ dx

0

4

91. ∫

⎛ ⎝ f ( x )− g ( x ) ⎞

⎠ dx

2

2

92. ∫

⎛ ⎝ 3 f ( x )−4 g ( x ) ⎞

⎠ dx

0

4

93. ∫

⎛ ⎝ 4 f ( x )−3 g ( x ) ⎞

⎠ dx

2

In the following exercises,

use the identity A f ( x ) dx to compute the

− A 0

− A A

f ( x ) dx = ∫

f ( x ) dx + ∫

0

integrals. 94. ⌠ ⌡ − π π

sin t 1+ t 2

dt ( Hint : sin(− t ) =−sin( t ))

Made with FlippingBook - professional solution for displaying marketing and sales documents online