Calculus Volume 1

Chapter 5 | Integration

587

Write the integral in terms of u , but pull the 1 2

outside the integration symbol:

⌠ ⌡ z

1/2

⎛ ⎝ z 2 −5

⎞ ⎠

2 ∫

u 1/2 du .

dz = 1

Integrate the expression in u :

⎛ ⎝ 1 2 ⎛ ⎝ 1 2

⎞ ⎠ u

3/2 3 2

1 2 ∫

u 1/2 du =

+ C

⎛ ⎝ 2 3

⎞ ⎠ u 3/2 + C

⎞ ⎠

=

u 3/2 + C

= 1 3 = 1 3

3/2

⎛ ⎝ z 2 −5

⎞ ⎠

+ C .

Use substitution to find ⌠ ⌡ x 2 ⎛

9

5.26

⎞ ⎠

⎝ x 3 +5

dx .

Example 5.32 Using Substitution with Integrals of Trigonometric Functions Use substitution to evaluate the integral ⌠ ⌡ sin t cos 3 t dt .

Solution We know the derivative of cos t is −sin t , so we set u =cos t . Then du =−sin tdt . Substituting into the integral, we have

⌠ ⌡

dt =− ⌠ ⌡

du u 3

sin t cos 3 t

.

Evaluating the integral, we get

− ⌠ ⌡

du u 3

=− ∫ u −3 du

⎛ ⎝ − 1 2

⎞ ⎠ u −2 + C .

=−

Putting the answer back in terms of t , we get ⌠ ⌡

sin t cos 3 t

dt = 1

+ C

2 u 2

= 1

+ C .

2cos 2 t

Made with FlippingBook - professional solution for displaying marketing and sales documents online