Calculus Volume 1

Chapter 5 | Integration

609

1 a cos y = 1

a 1−sin 2 y

= 1

a 2 − a 2 sin 2 y

= 1

.

a 2 − x 2

Then for − a ≤ x ≤ a , and generalizing to u , we have ⌠ ⌡ 1 a 2 − u 2

du = sin −1 ⎛

⎞ ⎠ + C .

⎝ u a

Example 5.49 Evaluating a Definite Integral Using Inverse Trigonometric Functions

1 2

Evaluate the definite integral ⌠ ⌡ 0

dx 1− x 2

.

Solution We can go directly to the formula for the antiderivative in the rule on integration formulas resulting in inverse trigonometric functions, and then evaluate the definite integral. We have

1 2

1 2

⌠ ⌡ 0

= sin −1 x | = sin −1 1

dx 1− x 2

0

−1 0

2 −sin

= π 6 = π 6

−0

.

Find the antiderivative of ⌠ ⌡

5.40

dx 1−16 x 2 .

Example 5.50 Finding an Antiderivative Involving an Inverse Trigonometric Function Evaluate the integral ⌠ ⌡ dx 4−9 x 2 .

Made with FlippingBook - professional solution for displaying marketing and sales documents online