Calculus Volume 1

614

Chapter 5 | Integration

426. ⌠

413. ⌠ ⌡ 414. ⌠ ⌡ 415. ⌠ ⌡ 416. ⌠ ⌡

tan −1 (2 t ) 1+4 t 2

⌡ dt t ⎛

dt

⎝ 1+ln 2 t ⎞ ⎠

⎛ ⎝ t 2

⎞ ⎠

t tan −1

427. ⌠ ⌡ 428. ⌠ ⌡

cos −1 (2 t ) 1−4 t 2 e t cos −1 ⎛

dt

dt

1+ t 4

sec −1 ⎞ ⎠ | t | t 2 −4 ⎛ ⎝ t 2

t ⎞ ⎠

⎝ e

dt

dt

1− e 2 t

t sec −1 ⎞ ⎠ t 2 t 4 −1 ⎛ ⎝ t 2

In the following exercises, compute each definite integral. 429. ⌠ ⌡ 0 1/2 tan ⎛ ⎝ sin −1 t ⎞ ⎠ 1− t 2 dt

dt

In the following exercises, use a calculator to graph the antiderivative ∫ f with C =0 over the given interval ⎡ ⎣ a , b ⎤ ⎦ . Approximate a value of C , if possible, such that adding C to the antiderivative gives the same value as the definite integral F ( x ) = ∫ a x f ( t ) dt . 417. [T] ⌠ ⌡ 1 x x 2 −4 dx over ⎡ ⎣ 2, 6 ⎤ ⎦

430. ⌠

⌡ 1/4 1/2

⎛ ⎝ cos −1 t

⎞ ⎠

tan

dt

1− t 2

431. ⌠ ⌡ 0 432. ⌠ ⌡ 0

1/2

⎛ ⎝ tan −1 t

⎞ ⎠

sin

dt

1+ t 2

1/2

⎛ ⎝ tan −1 t

⎞ ⎠

418. [T] ⌠ ⌡ 419. [T] ⌠ ⌡ 420. [T] ⌠ 421. [T] ⌠ ⌡ 422. [T] ⌠

cos

1 (2 x +2) x

dx over ⎡

⎤ ⎦

⎣ 0, 6

dt

1+ t 2

(sin x + x cos x ) 1+ x 2 sin 2 x

dx over ⎡

⎣ −6, 6 ⎤ ⎦

433. For A >0, compute I ( A ) = ⌠ ⌡ − A A dt 1+ t 2

and

e −2 x 1− e −4 x

⌡ 2

dx over [0, 2]

1 1+ t 2

I ( A ), the area under the graph of

evaluate lim a →∞

on [−∞, ∞]. 434. For 1< B <∞, compute I ( B ) = ⌠ ⌡ 1 B

1 x + x ln 2 x

over [0, 2]

dt t t 2 −1

and

−1 x 1− x 2

⌡ sin

over [−1, 1]

lim B →∞

I ( B ), the area under the graph of

evaluate

1 t t 2 −1

over [1, ∞).

In the following exercises, compute each integral using appropriate substitutions. 423. ⌠ ⌡ e t 1− e 2 t dt 424. ⌠ ⌡ e t 1+ e 2 t dt 425. ⌠ ⌡ dt t 1−ln 2 t

435. Use the substitution u = 2cot x and the identity 1+cot 2 x =csc 2 x to evaluate ⌠ ⌡ dx 1+cos 2 x . ( Hint: Multiply the top and bottom of the integrand by csc 2 x .)

This OpenStax book is available for free at http://cnx.org/content/col11964/1.12

Made with FlippingBook - professional solution for displaying marketing and sales documents online