Calculus Volume 1

618

Chapter 5 | Integration

If f ( x ) is continuous over an interval ⎡ ⎣ a , b ⎤

⎦ , then there is at least one point c ∈ ⎡ ⎣ a , b ⎤

⎦ such that

b − a ∫ a b

f ( c ) = 1

f ( x ) dx .

• Fundamental Theorem of Calculus Part 1 If f ( x ) is continuous over an interval ⎡ ⎣ a , b ⎤ F ′( x ) = f ( x ). • Fundamental Theorem of Calculus Part 2 If f is continuous over the interval ⎡ ⎣ a , b ⎤

⎦ , and the function F ( x ) is defined by F ( x ) = ∫ a x

f ( t ) dt , then

⎦ and F ( x ) is any antiderivative of f ( x ), then ∫ a b

f ( x ) dx = F ( b )− F ( a ).

• Net Change Theorem F ( b ) = F ( a )+ ∫ a b

F '( x ) dx or ∫ a b

F '( x ) dx = F ( b )− F ( a )

• Substitution with Indefinite Integrals ∫ f ⎡ ⎣ g ( x ) ⎤

⎦ g ′( x ) dx = ∫ f ( u ) du = F ( u )+ C = F ⎛

⎞ ⎠ + C

⎝ g ( x )

• Substitution with Definite Integrals ⌠ ⌡ a b f ⎛ ⎝ g ( x ) ⎞ ⎠ g '( x ) dx = ∫ g ( a ) g ( b ) f ( u ) du • Integrals of Exponential Functions ∫ e x dx = e x + C ⌠ ⌡ a x dx = a x ln a + C • Integration Formulas Involving Logarithmic Functions ∫ x −1 dx = ln| x | + C ∫ ln xdx = x ln x − x + C = x (ln x −1)+ C ∫ log a xdx = x ln a (ln x −1)+ C • Integrals That Produce Inverse Trigonometric Functions

⌠ ⌡ ⌠ ⌡ ⌠ ⌡

= sin −1 ⎛

⎞ ⎠ + C

du a 2 − u 2

⎝ u a

−1 ⎛

⎞ ⎠ + C

du a 2 + u 2

⎝ u a

= 1 a tan

−1 ⎛

⎞ ⎠ + C

du u u 2 − a 2

⎝ u a

= 1 a sec

KEY CONCEPTS 5.1 Approximating Areas • The use of sigma (summation) notation of the form ∑ i =1 n

a i is useful for expressing long sums of values in compact

form.

This OpenStax book is available for free at http://cnx.org/content/col11964/1.12

Made with FlippingBook - professional solution for displaying marketing and sales documents online