Calculus Volume 1

Chapter 6 | Applications of Integration

681

Figure 6.47 (a) The graph of g ( y ). (b) The surface of revolution.

We have g ( y ) = (1/3) y 3 , so g ′( y ) = y 2 and ⎛

⎞ ⎠ 2 = y 4 . Then

⎝ g ′( y )

Surface Area = ∫ c d ⎛

⎞ ⎠ dy

⎞ ⎠ 2

⎝ 2 πg ( y ) 1+ ⎛

⎝ g ′( y )

2 ⎛

⎞ ⎠ dy

⎛ ⎝ 1 3

y 3 ⎞

= ∫

⎠ 1+ y 4

⎝ 2 π

0

2 ⎛ ⎝ y 3 1+ y 4 ⎞

3 ∫

= 2 π

0 ⎠ dy . Let u = y 4 +1. Then du =4 y 3 dy . When y =0, u =1, and when y =2, u =17. Then 2 π 3 ∫ 0 2 ⎛ ⎝ y 3 1+ y 4 ⎞ ⎠ dy = 2 π 3 ∫ 1 17 1 4 udu

⎦ | 1

⎡ ⎣ 2 3

u 3/2 ⎤

17

⎡ ⎣ (17) 3/2 −1 ⎤

= π 6

= π 9

⎦ ≈24.118.

6.22

Let g ( y ) = 9− y 2 over the interval y ∈ [0, 2]. Find the surface area of the surface generated by revolving the graph of g ( y ) around the y -axis.

Made with FlippingBook - professional solution for displaying marketing and sales documents online