Calculus Volume 1

Chapter 6 | Applications of Integration

715

The Grand Canyon Skywalk The Grand Canyon Skywalk opened to the public on March 28, 2007. This engineering marvel is a horseshoe-shaped observation platform suspended 4000 ft above the Colorado River on the West Rim of the Grand Canyon. Its crystal- clear glass floor allows stunning views of the canyon below (see the following figure).

Figure 6.72 The Grand Canyon Skywalk offers magnificent views of the canyon. (credit: 10da_ralta, Wikimedia Commons)

The Skywalk is a cantilever design, meaning that the observation platform extends over the rim of the canyon, with no visible means of support below it. Despite the lack of visible support posts or struts, cantilever structures are engineered to be very stable and the Skywalk is no exception. The observation platform is attached firmly to support posts that extend 46 ft down into bedrock. The structure was built to withstand 100-mph winds and an 8.0-magnitude earthquake within 50 mi, and is capable of supporting more than 70,000,000 lb. One factor affecting the stability of the Skywalk is the center of gravity of the structure. We are going to calculate the center of gravity of the Skywalk, and examine how the center of gravity changes when tourists walk out onto the observation platform. The observation platform is U-shaped. The legs of the U are 10 ft wide and begin on land, under the visitors’ center, 48 ft from the edge of the canyon. The platform extends 70 ft over the edge of the canyon. To calculate the center of mass of the structure, we treat it as a lamina and use a two-dimensional region in the xy -plane to represent the platform. We begin by dividing the region into three subregions so we can consider each subregion

Made with FlippingBook - professional solution for displaying marketing and sales documents online