Calculus Volume 1

732

Chapter 6 | Applications of Integration

6.7 EXERCISES

For the following exercises, find the derivative dy dx . 295. y = ln(2 x ) 296. y = ln(2 x +1) 297. y = 1 ln x For the following exercises, find the indefinite integral. 298. ∫ dt 3 t 299. ∫ dx 1+ x For the following exercises, find the derivative dy / dx . (You can use a calculator to plot the function and the derivative to confirm that it is correct.)

2

312. ∫

xdx x 2 +1 x 3 dx x 2 +1

0

2

313. ∫

0

e

314. ∫

dx x ln x

2

e

315. ∫ dx x (ln x ) 2 316. ∫ cos xdx sin x 317. ∫ 0 π /4 tan xdx 318. ∫ cot(3 x ) dx 319. ∫ (ln x ) 2 dx x For the following exercises, compute dy / dx by differentiating ln y . 320. y = x 2 +1 321. y = x 2 +1 x 2 −1 2

x )

300. [T] y = ln( x 301. [T] y = x ln( x ) 302. [T] y = log 10 x 303. [T] y = ln(sin x ) 304. [T] y = ln(ln x ) 305. [T] y =7 ln(4 x )

322. y = e sin x 323. y = x −1/ x 324. y = e ( ex )

306. [T] y = ln ⎛

⎞ ⎠

⎝ (4 x ) 7

307. [T] y = ln(tan x ) 308. [T] y = ln(tan(3 x ))

325. y = x e 326. y = x (

309. [T] y = ln ⎛

⎞ ⎠

⎝ cos 2 x

ex )

For the following exercises, find the definite or indefinite integral. 310. ∫ 0 1 dx 3+ x 311. ∫ 0 1 dt 3+2 t

327. y = x x 3 x 6 328. y = x −1/ln x 329. y = e −ln x

For the following exercises, evaluate by any method.

This OpenStax book is available for free at http://cnx.org/content/col11964/1.12

Made with FlippingBook - professional solution for displaying marketing and sales documents online