Calculus Volume 1

Answer Key

839

3/2 . One should take C = − 1 3 .

The antiderivative is y = 1 3 ⎛

⎝ 2 x 3 +1 ⎞ ⎠

305 . No, because the integrand is discontinuous at x =1. 307 . u = sin ⎛ ⎝ t 2 ⎞ ⎠ ; the integral becomes 1 2 ∫ 0 0 udu . 309 . u = 2 ⎞ ⎠ ⎟ ; the integral becomes − ∫ 5/4 1 ⎛ ⎝ ⎜ 1+ ⎛ ⎝ t − 1 2 ⎞ ⎠

u du .

5/4

311 . u =1− t ; the integral becomes ∫ 1 −1 u cos( π (1− u )) du = ∫ 1 −1

u [cos π cos πu −sin π sin πu ] du

−1

=− ∫

u cos πudu

1

−1 1

= ∫

u cos πudu =0

since the integrand is odd. 313 . Setting u = cx and du = cdx gets you 1 b c − a c ∫ a / c b / c

⌠ ⌡ u = a u = b

− a ∫ a b

f ( u ) du

f ( cx ) dx = c

f ( u ) du .

c = 1 b

b − a

u 1− a |

1

⎛ ⎝ 1−

1− a ⎞

315 . ⌠ ⌡ 0 x

u =1− x 2 1

⌠ ⌡

⎛ ⎝ 1− x 2

⎞ ⎠

du u a = 1

⎠ . As x →1 the limit is

g ( t ) dt = 1 2

= 1

2(1− a )

2(1− a )

u =1− x 2

1 2(1− a ) if a <1, and the limit diverges to +∞ if a >1. 317 . ∫ t = π 0 b 1−cos 2 t × (− a sin t ) dt = ∫ t =0 π ab sin 2 tdt

Made with FlippingBook - professional solution for displaying marketing and sales documents online