Calculus Volume 1

840

Answer Key

319 . f ( t ) =2cos(3 t )−cos(2 t ); ⌠ ⌡ 0 π /2 ⎛

⎝ 2cos(3 t )−cos(2 t ) ⎞

⎠ = − 2 3

321 . −1 3

e −3 x + C

− x ln3 ⎛ ⎝ x 2

323 . − 3

+ C

⎞ ⎠ + C

325 . ln

327 . 2 x + C 329 . − 1 ln x

+ C

331 . ln ⎛ ⎠ + C 333 . ln( x cos x )+ C 335 . − 1 2 ⎛ ⎝ ln(cos( x )) ⎞ ⎝ ln(ln x ) ⎞

⎠ 2 + C

− x 3 3 +

337 . − e

C

339 . e tan x + C 341 . t + C 343 . 1 9 x 3 ⎛ ⎝ ln ⎛ ⎝ x 3 ⎞

⎞ ⎠ + C

⎠ −1

345 . 2 x (ln x −2)+ C 347 . ⌠ ⌡ 0 ln x e t dt = e t | 0 ln x

= e ln x − e 0 = x −1

349 . − 1 3 ln ⎛ 351 . − 1 2 ln | csc ⎛

⎝ sin(3 x )+cos(3 x ) ⎞ ⎠

⎞ ⎠ | + C

⎞ ⎠ +cot

⎛ ⎝ x 2

⎝ x 2

⎠ 2 + C

353 . − 1 2 ⎛ 355 . 1 357 . ln ⎛ 3 ln

⎝ ln(csc x ) ⎞

⎛ ⎝ 26 7

⎞ ⎠

⎝ 3−1 ⎞ ⎠

3 2

359 . 1

2 ln

361 . y −2ln | y +1 | + C 363 . ln | sin x −cos x | + C 365 . − 1 3 ⎛ ⎝ 1− ⎛ ⎝ ln x 2 ⎞ ⎠ ⎞ ⎠ 3/2 + C 367 . Exact solution: e −1

e , R 50 =0.6258. Since f is decreasing, the right endpoint estimate underestimates the area.

369 . Exact solution: 2ln(3) − ln(6) 2 ,

R 50 =0.2033. Since f is increasing, the right endpoint estimate overestimates the area.

371 . Exact solution: − 1 ln(4)

, R 50 =−0.7164. Since f is increasing, the right endpoint estimate overestimates the area (the

actual area is a larger negative number). 373 . 11 2 ln2 375 . 1 ln(65, 536) 377 . ⌠ ⌡ N N +1 xe − x 2 dx = 1 2 ⎛ ⎝ e − N 2

⎞ ⎠ . The quantity is less than 0.01 when N =2.

− e −( N +1) 2

This OpenStax book is available for free at http://cnx.org/content/col11964/1.12

Made with FlippingBook - professional solution for displaying marketing and sales documents online