Calculus Volume 1

Answer Key

841

⎛ ⎝ 1 b

⎞ ⎠ = ∫

1/ a dx x

b dx x = ln( b )−ln( a ) = ln ⎛ ⎝ 1 a ⎞

379 . ∫

⎠ −ln

a

1/ b

381 . 23 383 . We may assume that x >1, so 1 x <1. Then, ∫ 1 1/ x dt

du = − dt t 2

t . Now make the substitution u = 1 t , so

and

1/ x dt

x du

du u = −

dt t , and change endpoints: ∫ 1

t =− ∫

u =−ln x .

1

⎠ . Then, 1= E '(ln x ) x

387 . x = E ⎛

⎝ ln( x ) ⎞

or x = E '(ln x ). Since any number t can be written t = ln x for some x , and for such t

we have x = E ( t ), it follows that for any t , E '( t ) = E ( t ). 389 . R 10 =0.6811, R 100 =0.6827

391 . sin −1 x | 0 393 . tan −1 x |

3/2

= π 3

1

= − π 12

3

395 . sec −1 x | 1 2

= π 4

⎛ ⎝ x 3

⎞ ⎠ + C

397 . sin −1

−1 ⎛ −1 ⎛

⎞ ⎠ + C ⎞ ⎠ + C

⎝ x 3 ⎝ x 3

399 . 1 401 . 1

3 tan

3 sec

⎛ ⎝ π

θ ⎞ ⎠ = sin θ . So, sin

−1 t = π

−1 t .

403 . cos

They differ by a constant.

2 −cos

2 −

405 . 1− t 2 is not defined as a real number when t >1. 407 .

Made with FlippingBook - professional solution for displaying marketing and sales documents online