Epigenetic therapies and addiction
Robison, A.J. and Nestler, E.J. (2011). Transcriptional and epigenetic mechanisms of addiction. Nature Reviews Neuroscience , 12(11), pp.623 – 637. Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3272277/ (Accessed: 20 August 2021). Siggins, G.R., Martin, G., Roberto, M., Nie, Z., Madamba, S. and Lecea, L. (2006). Glutamatergic Transmission in Opiate and Alcohol Dependence. Annals of the New York Academy of Sciences , 1003(1), pp.196 – 211. Available at: https://nyaspubs.onlinelibrary.wiley.com/doi/full/10.1196/annals.1300.012 (Accessed: 18 August 2021). Sun, H., Maze, I., Dietz, D.M., Scobie, K.N., Kennedy, P.J., Damez-Werno, D., Neve, R.L., Zachariou, V., Shen, L. and Nestler, E.J. (2012). Morphine Epigenomically Regulates Behavior through Alterations in Histone H3 Lysine 9 Dimethylation in the Nucleus Accumbens. Journal of Neuroscience , 32(48), pp.17454 – 17464. Available at: https://www.jneurosci.org/content/32/48/17454 (Accessed: 18 August 2021). Walker, D.M. and Nestler, E.J. (2018). Neuroepigenetics and addiction. Neurogenetics, Part II , pp.747 – 765. Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5868351/#R76 (Accessed: 19 August 2021). Wang, Y., Lai, J., Cui, H., Zhu, Y., Zhao, B., Wang, W. and Wei, S. (2014). Inhibition of Histone Deacetylase in the Basolateral Amygdala Facilitates Morphine Context-Associated Memory Formation in Rats. Journal of Molecular Neuroscience , 55(1), pp.269 – 278. Available at: https://link.springer.com/article/10.1007/s12031-014-0317-4#Sec20 (Accessed: 20 August 2021). Yamada, K., Mizuno, M. and Nabeshima, T. (2002). Role for brain-derived neurotrophic factor in learning and memory. Life Sciences , 70(7), pp.735 – 744. Available at: https://www.sciencedirect.com/science/article/abs/pii/S0024320501014618?via%3Dihub (Accessed: 18 August 2021).
172
Made with FlippingBook interactive PDF creator