C+S September 2023 Vol. 9 Issue 9 (web)

Active advanced treatment systems provide high-quality effluent and are effective in reducing BOD, TSS, Nitrogen, and Phosphorus. Depending on the specified technology, the treated water can be captured for reuse for non-potable purposes such as irrigation or industrial processes. This reduces freshwater demand and offers this highly treated wastewater a second use prior to returning it to the ground water. Reuse may require additional levels of treatment such as disinfection. Passive and active advanced treatment technologies present unique benefits, offering system designers the ability to provide site-specific solutions that tailor the system design to address the specific needs of the area. Passive treatment systems allow a system designer to offer a highly treated effluent solution in remote or off-grid areas where centralized systems may not be available or are too costly for connection. Tight Soils Tight soils, such as clay or compacted soils, hinder wastewater infiltration and limit treatment efficiency. Passive treatment technologies provide effective solutions for treating wastewater in these challenging soil conditions. One such technology is the use of alternative media in soil absorption systems. By replacing the native soil or adding a highly permeable media, such as coarse, clean specified sand, the infiltration rate can be significantly improved. The sand media treats the wastewater thereby removing the organics and allowing clean water to infiltrate to the soil below. Tighter soils can more readily accept the treated effluent because there is no organic buildup. Another option is the implementation of active treatment, which provides enhanced treatment to also reduce the organic load to the soil. High Water Tables Shallow ground water presents challenges for wastewater treatment systems, as they can interfere with the treatment process and compromise system integrity. In decentralized treatment, technologies such as raised bed systems, mounded systems, and pressure distribution systems provide flexibility. These systems are designed to elevate the wastewater treatment area above the water table, providing proper separation distances that prevent contamination and ensure effective treatment before it reaches the groundwater. Other innovative solutions include constructed wetlands which can be implemented to naturally treat the effluent. Environmentally Sensitive Areas In areas with strict environmental regulations or sensitive water bodies, advanced wastewater treatment may be necessary to meet the required discharge standards. Installing advanced treatment systems can ensure compliance with applicable regulations. Enhanced nutrient removal is required to achieve these discharge standards to protect water bodies or when a NPDES permit is required. Advanced treatment technologies can remove a high percentage of nutrients including nitrogen and phosphorus from wastewater. Additional treatment options, such as disinfection with UV light or chlorine, can effectively reduce or inactivate bacteria, viruses, and other microorganisms. This reduces the potential for waterborne diseases thereby protecting public health.

It also ensures that the discharged wastewater meets higher water quality standards, minimizing potential harm to aquatic ecosystems and the surrounding environment. Groundwater Shortages and Managed Aquifer Recharge (MAR) By recharging treated wastewater directly into the ground, decentralized systems replenish aquifers, helping to restore groundwater levels. This promotes the long-term sustainability of water resources and mitigates the impacts of over-extraction of groundwater resources. It reduces stress on lakes, rivers, and reservoirs, preserving these sources for other essential purposes and environmental habitat. This decentralized approach allows communities to take control and manage their own water resources, reducing reliance on centralized water supply networks. Long-Term Sustainability and Operations and Maintenance (O&M) Advanced wastewater treatment systems often incorporate features that provide ease of maintenance. Remote monitoring and sensors have been introduced for effective management. All treatment systems, passive or active, require some level of operations and maintenance. These O&M frameworks are one of the most critical parts of the wastewater management infrastructure, providing reliability and confidence to the public.

29

September 2023 csengineermag.com

Made with FlippingBook Annual report