(Part A) Machinerys Handbook 31st Edition Pages 1-1484

Machinery's Handbook, 31st Edition

Trigonometry Tables 107 their sum is 90 ° ) and are related (see Cofunction Identities: , page 97). For example, sin 10 ° = cos 80 ° and cos 10 ° = sin 80 ° . Expanded trig tables are also available in the AD- DITIONAL material in the Machinery’s Handbook 31 Digital Edition . Angle measures greater than 90 degrees are converted to their reference angle (that is, its angle equivalent) before a trigonometric value can be found. If the angle θ is between 90 and 180, its reference angle is 180 – θ ; if θ is between 180 and 270, then θ – 180 is its reference angle; and if it is between 270 and 360 degrees, 360 – θ is its acute angle equivalent. To determine trigonometric values of functions of angles greater than 90 °, subtract 90, 180, 270, or 360 from the angle to get the reference angle less than 90 ° and use Table 1, Useful Relationships Among Angles , to find the equivalent first-quadrant func - tion and angle to look up in the trig tables.

Radians

1.6 1.5

1.4 1.3

π 3 - -

2 π 3 ---

1.8 1.7

1.9

π 2 --

1.2

2.0

1.1

2.1

1.0

π 4 --

3 π 4 ---

2.2

0.9

2.3

0.8

2.4

0.7

70 100 90 80 110

2.5

π 6 --

5 π 6 ---

0.6

120

60

r e

2.6

50

130

0.5

+ − − − − + − − + + − −

+ + + + + + − + − − + −

sin cos tan cot sec csc sin cos tan cot sec csc

sin cos tan cot sec csc sin cos tan cot sec csc

2.7

(1 to 0) (0 to − 1)

(0 to  ) (  to 0) (  to 1) (1 to  ) (0 to 1) (1 to 0) (  to 0) (0 to  ) ( − 1 to  ) (  to 1) ( − 1 to 0) (0 to 1)

40

140

0.4

2.8

30

150

(  to 0) (0 to  ) (1 to  ) (  to − 1)

0.3

2.9

20

160

0.2

3.0

10

170

0.1

3.1 3.2

II I III IV

π

180

350 0 and 360

2 π

6.3

6.2

(0 to  ) (  to 0) (  to − 1) ( − 1 to  ) (0 to − 1) ( − 1 to 0)

190

3.3

6.1

200

340

3.4

6.0

210

330

3.5

5.9

220

320

3.6

5.8

310

230

3.7

11 π 6 -----

7 π 6 ---

240

300

5.7

250

3.8

260 270 280 290

5.6

3.9

5.5

5 π 4 ---

7 π 4 ---

4.0

5.4

4.1

5.3

4.2

5.2

4.3

4 π 3 ---

5 π 3 ---

5.1

4.4 4.5

5.0

4.6 4.7 4.8 4.9

3 π 2 ---

Fig. 4. Signs of Trigonometric Functions, Fractions of p , and Degree-Radian Conversion Table 1. Useful Relationships Among Angles Angle Function q -q 90 ° ± q 180 ° ± q 270 ° ± q 360 ° ± q sine sin q - sin q +cos q sin q - cos q ± sin q cosine cos q +cos q sin q - cos q ± sin q +cos q tangent tan q - tan q cot q ± tan q cot q ± tan q cotangent cot q - cot q tan q ± cot q tan q ± cot q secant sec q +sec q csc q - sec q ± csc q +sec q cosecant csc q - csc q +sec q csc q - sec q ± csc q Examples: cos (270 ° - q ) = - sin q ; tan (90 ° + q ) = - cot q . Example: Find the cosine of 336 ° 40 ′ . Fig. 4 shows that the cosine of every angle in Quadrant IV (270 ° to 360 ° ) is positive. To find the angle and trig function to use when entering the trig table, subtract 270 from 336 to get cos 336 ° 40 ′ = cos (270 ° + 66 ° 40 ′ ) and then find the intersection of the “cos row” and the 270 ± q column in Table 1. Because cos (270 ± q ) in the fourth quadrant is equal to ± sin q in the first quadrant, find sin 66 ° 40 ′ in the trig table. Therefore, cos 336 ° 40 ′ = sin 66 ° 40 ′ = 0.918216.

Copyright 2020, Industrial Press, Inc.

ebooks.industrialpress.com

Made with FlippingBook - Share PDF online