(Part A) Machinerys Handbook 31st Edition Pages 1-1484

Machinery's Handbook, 31st Edition

118 Spherical Trigonometry Oblique Spherical Trigonometry.— The heavy solid lines B , C , and S of Fig. 2 represent the sides of an oblique spherical triangle. The dashed lines J and L are radii of the sphere extending from the center of the sphere to the vertices of the triangle. The several plane triangles, indicated by the various broken lines, are formed from the radii and vertices of the spherical triangle. J and L are radii and thus have the same value.

Fig. 2. Oblique Spherical Triangle Formulas for Oblique Spherical Triangles Formulas for Lengths

π 180 ----- G × × ° =

π 180 ----- H × × ° =

π 180 ----- R × × °

180 π -----

180 π -----

B G ° ---- ×

S R ° --- ×

=

=

J

L

S L =

B J

C J

Formulas for Angles

180 π -----

180 π -----

180 π -----

B J -- ×

C J -- ×

S L -- ×

G °

H °

R °

=

=

=

Angular Relationships

Angle

Relationships

Angle

Relationships

D G N

E

E sin csc G × × E sin csc D × ×

G sin csc R × ×

D sin

=

R sin

E sin

=

D sin

E E

×

G sin

=

R sin

E 1 cot

=

D tan

H cos

1

D cos csc E 1 ×

E 2 sin ×

×

N cos

=

E 2 cot

=

N tan

R cos

2

R G + 2 ------- R G – 2 -------

D E + 2 ------- D E – 2 -------

   

   

   

   

sin

sin

D E – 2 -------

R G – 2 -------

N 2 --     cot

H 2 --     tan

 

 

 

 

N

H

tan ×

tan ×

sin --------------

sin --------------

=

=

R

G sin ×

E csc ×

R sin

=

D sin

Area Formula

π 180 ----- D E N 180 ° – + + ( ) ×

2

Area

=

L

Copyright 2020, Industrial Press, Inc.

ebooks.industrialpress.com

Made with FlippingBook - Share PDF online