(Part A) Machinerys Handbook 31st Edition Pages 1-1484

Machinery's Handbook, 31st Edition

1242 BAND SAW BLADES Example: A 4-inch pipe with a 3-inch inside diameter is to be cut. Select a variable pitch blade for cutting this material. The area of the pipe is π ⁄4 3 (4 2 − 3 2 ) = 5.5 in 2 . The blade has to travel 4 inches to cut through the pipe, so the average length of cut is 5.5 ∕ 4 = 1.4 inches. On the tooth selection wheel, estimate the location of 1.4 inches on the outer ring, and read the tooth specification from the ring marked with the pipe, angle, and I-beam symbols. The chart indicates that a 4 ∕ 6 variable-pitch blade is the preferred blade for this cut. Tooth Forms.— Band saw teeth are characterized by a tooth form that includes the shape, spacing (pitch), rake angle, and gullet capacity of the tooth. Tooth form affects the cutting efficiency, noise level, blade life, chip-carrying capacity, and the surface finish quality of the cut. The rake angle, which is the angle between the face of the tooth and a line perpendicular to the direction of blade travel, influences the cutting speed. In general, positive rake angles cut faster. The standard tooth form has conventional shape teeth, evenly spaced with deep gullets and a 0 ° rake angle. Standard tooth blades are used for general-purpose cutting on a wide variety of materials. The skip tooth form has shallow, widely spaced teeth arranged in narrow bands and a 0 ° rake angle. Skip tooth blades are used for cutting soft metals, wood, plastics, and composite materials. The hook tooth form is similar to the skip tooth, but has a positive rake angle and is used for faster cutting of large sections of soft metal, wood, and plastics, as well as for cutting some metals, such as cast iron, that form a discontinuous chip. The variable-tooth (variable-pitch) form has a conventional tooth shape, but the tips of the teeth are spaced a variable distance (pitch) apart. The variable pitch reduces vibration of the blade and gives smoother cutting, better surface finish, and longer blade life. The variable positive tooth form is a variable-pitch tooth with a positive rake angle that causes the blade to penetrate the work faster. The vari- able positive tooth blade increases production and gives the longest blade life. Set is the angle that the teeth are offset from the straight line of a blade. The set affects the blade efficiency (i.e., cutting rate), chip-carrying ability, and quality of the surface finish. Alternate set blades have adjacent teeth set alternately one to each side. Alternate set blades, which cut faster but with a poorer finish than other blades, are especially useful for rapid rough cutting. A raker set is similar to the alternate set, but every few teeth, one of the teeth is set to the center, not to the side (typically every third tooth, but sometimes every fifth or seventh tooth). The raker set pattern cuts rapidly and produces a good sur - face finish. The vari-raker set, or variable raker, is a variable-tooth blade with a raker set. The vari-raker is quieter and produces a better surface finish than a raker set standard tooth blade. Wavy set teeth are set in groups, alternately to one side, then to the other. Both wavy set and vari-raker set blades are used for cutting tubing and other interrupted cuts, but the blade efficiency and surface finish produced are better with a vari-raker set blade. Types of Blades.— The most important band saw blade types are carbon steel, bimetal, carbide tooth, and grit blades made with embedded carbide or diamond. Carbon steel blades have the lowest initial cost, but they may wear out faster. Carbon steel blades are used for cutting a wide variety of materials, including mild steels, aluminum, brass, bronze, cast iron, copper, lead, and zinc, as well as some abrasive materials such as cork, fiberglass, graphite, and plastics. Bimetal blades are made with a high-speed steel cutting edge that is welded to a spring steel blade back. Bimetal blades are stronger and last longer, and they tend to produce straighter cuts because the blade can be tensioned higher than carbon steel blades. Because bimetal blades last longer, the cost per cut is frequently lower than when using carbon steel blades. Bimetal blades are used for cutting all ferrous and nonferrous metals, a wide range of shapes of easy to moderately machinable material, and solids and heavy wall tubing with moderate to difficult machinability. Tungsten carbide blades are similar to bimetal blades but have tungsten carbide teeth welded to the blade back. The welded teeth of carbide blades have greater wear and high-temperature resis­ tance than either carbon steel or bimetal blades and produce less tooth vibration, while giving smoother, straighter, faster, and quieter cuts requiring less feed force. Carbide blades are used on tough alloys such as cobalt, nickel- and titanium-based alloys, and for

Copyright 2020, Industrial Press, Inc.

ebooks.industrialpress.com

Made with FlippingBook - Share PDF online