(Part A) Machinerys Handbook 31st Edition Pages 1-1484

Machinery's Handbook, 31st Edition

1312 GRINDING WHEEL SAFETY Grinding Wheel Mounting.— The mass and speed of the operating grinding wheel makes it particularly sensitive to imbalance. Vibrations that result from such conditions are harmful to the machine, particularly the spindle bearings, and they also affect the ground surface, i.e., wheel imbalance causes chatter marks and interferes with size con- trol. Grinding wheels are shipped from the manufacturer’s plant in a balanced condition, but retaining the balanced state after mounting the wheel is quite uncertain. Balancing of the mounted wheel is thus required, and is particularly important for medium and large size wheels, as well as for producing accurate and smooth surfaces. The most common way of balancing mounted wheels is by using balancing flanges with adjustable weights. The wheel and balancing flanges are mounted on a short balancing arbor, the two concen - tric and round stub ends of which are supported in a balancing stand. Such stands are of two types: 1) the parallel straight-edged, which must be set up pre­ cisely level; and 2) the disk type having two pairs of ball bearing mounted overlapping disks, which form a V for containing the arbor ends without hindering the free rotation of the wheel mounted on that arbor. The wheel will then rotate only when it is out of balance and its heavy spot is not in the lowest position. Rotating the wheel by hand to different positions will move the heavy spot, should such exist, from the bottom to a higher location where it can reveal its presence by causing the wheel to turn. Having detected the presence and location of the heavy spot, its effect can be cancelled by displacing the weights in the circular groove of the flange until a balanced condition is accomplished. Flanges are commonly used means for holding grinding wheels on the machine spindle. For that purpose, the wheel can either be mounted directly through its hole or by means of a sleeve which slips over a tapered section of the machine spindle. Either way, the flanges must be of equal diameter, usually not less than one-third of the new wheel’s diameter. The purpose is to securely hold the wheel between the flanges without interfering with the grinding operation even when the wheel becomes worn down to the point where it is ready to be discarded. Blotters or flange facings of compressible material should cover the entire contact area of the flanges. One of the flanges is usually fixed while the other is loose and can be removed and adjusted along the machine spindle. The movable flange is held against the mounted grind­ ing wheel by means of a nut engaging a threaded section of the machine spindle. The sense of that thread should be such that the nut will tend to tighten as the spindle revolves. In other words, to remove the nut, it must be turned in the direction that the spindle revolves when the wheel is in operation. Safe Operating Speeds.— Safe grinding processes are predicated on the proper use of the previously discussed equipment and procedures, and are greatly dependent on the application of adequate operating speeds. The Standard establishes maximum speeds at which grinding wheels can be operated, assigning the various types of wheels to several classification groups. Different values are listed according to bond type and to wheel strength, distinguishing between low, medium and high strength wheels. For the purpose of general information, the accompanying Table 1 shows an abbreviated version of the Standard’s specification. However, for the governing limits, the authorita­ tive source is the manufacturer’s tag on the wheel which, particularly for wheels of lower strength, might specify speeds below those of the table. All grinding wheels of 6 inches or greater diameter must be test run in the wheel manufacturer’s plant at a speed that for all wheels having operating speeds in excess of 5000 sfpm is 1.5 times the maximum speed marked on the tag of the wheel. The table shows the permissible wheel speeds in surface feet per minute (sfpm) units, whereas the tags on the grinding wheels state, for the convenience of the user, the maxi­ mum operating speed in revolutions per minute (rpm). The sfpm unit has the advantage of remaining valid for worn wheels whose rotational speed may be increased to the applicable sfpm value. The conversion from either one to the other of these two kinds of units is a matter of simple calculation using the formulas: D 12 sfpm rpm # # π = or D 12 rpm sfpm # # π = where D = maximum diameter of the grinding wheel, in inches. Table 2, showing the con­ version values from surface speed into rotational speed, can be used for the direct reading of the rpm values corresponding to several different wheel diameters and surface speeds.

Copyright 2020, Industrial Press, Inc.

ebooks.industrialpress.com

Made with FlippingBook - Share PDF online