Machinery's Handbook, 31st Edition
252
Moment of Inertia, Section Modulus Polar Moment of Inertia and Polar Section Modulus
Polar Moment of Inertia, J
Polar Section Modulus, Z p
Section
. 6 01667 4 a =
. a d 0208 0074 3 3 = .
4
a
a
d a
. bd 3 18 2 + ( d is the shorter side) b d
2 2 + ^ h
bd b d 12
d
b
. 16 0196 3 D =
. 32 0098 4 D =
π
π
4
3
D
D
D
D D d D 4 4 − a
π −
a
k
π −
4 4
. 16 0196
D d
h
. 32 0098 ^
d
D
4 4
D d
4 4
D d −
h
^
=
k
=
C
. 8 5 3 10825 012 4 4 4 = = . s s F
. F 020 3
F
s
3
4
D
s
π
D s 32 6 4 4 −
π
− =
16 3
D
D
s
D s 4
. 0098 0167 . D s 4 −
4
. 0196 0333 . D 3 −
=
3
. 5 3 0196 2165 . D s D 4 3 −
D
π
4
. 5 3 0098 10825 . s D 4 4 −
D
π
16 4 −
− =
32 8
s
D
D s 4
4
s
=
. s 20 005 3 3 = s
. 48 3 0036 4 4 = s s
s
Polar Section Modulus for a shaft of given diameter can be obtained by multiplying its section modulus by 2. Polar Moment of Inertia can be obtained by multiplying its moment of inertia by 2.
Copyright 2020, Industrial Press, Inc.
ebooks.industrialpress.com
Made with FlippingBook - Share PDF online