(Part A) Machinerys Handbook 31st Edition Pages 1-1484

Machinery's Handbook, 31st Edition

48

RELATIONSHIP BETWEEN COORDINATE SYSTEMS Relationship Between Spherical and Rectangular Coordinates

Spherical to Rectangular

Rectangular to Spherical

2

2

2

x = + + y

r

z

z x 2 y 2 + -----------

=

tan –1

φ

for x 2 + y 2 ≠ 0

φ λ = cos cos φ λ = cos sin

x r y r z r

tan –1 y x

-    

=

for x > 0, y > 0

λ

φ = sin

λ π tan –1 y x -     = +

for x < 0

λ for x > 0, y < 0 Example 3: Find the spherical coordinates of the point P (3, - 4, - 12). r 3 2 –4 ( ) 2 –12 ( ) 2 + + 13 = = 2 π tan –1 y x -     = +

–12 3 2 –4 + --------------- tan –1 12 5 ( ) 2 –---     =

=

=

67.38 ° –

tan –1

φ

λ = The spherical coordinates of P are therefore r = 13, f = - 67.38 ° , and l = 306.87 ° . Cylindrical Coordinates: For problems in which points lie on the surface of a cylinder it is convenient to use cylindrical coordinates. The cylindrical coordinates r , q , z of P coincide with the polar coordinates of the point P ′ in the x , y -plane and the rectangular z -coordinate of P . Formulas for q hold only if x 2 + y 2 ≠ 0; q is undetermined if x = y = 0. Cylindrical to Rectangular Rectangular to Cylindrical z 360 ° tan –1 4 3 –--     + 360 ° 53.13 ° – 306.87 ° = =

1 x 2 y 2 = ------+----- x x 2 y 2 + = ----------- y x 2 y 2 + = -----------

r

θ = cos θ = sin

x r y r z z =

θ cos

P

θ sin

O

z z =

r

θ

y

x

P 

Example 4: Given the cylindrical coordinates of a point P , r = 3, q = - 30 ° , z = 51, find the rectangular coordinates. Using the above formulas x = 3cos( - 30 ° ) = 3cos(30 ° ) = 2.598; y = 3sin( - 30 ° ) = - 3sin(30 ° ) = - 1.5; and z = 51. Therefore, the rectangular coordinates of point P are x = 2.598, y = - 1.5, and z = 51.

Copyright 2020, Industrial Press, Inc.

ebooks.industrialpress.com

Made with FlippingBook - Share PDF online