Section N Technical Guide

N35 to N77 N

Technical Guidance Reference

N

N

Technical Guidance Turning Edition ................................................ N36 Recommended Running Conditions .............. N40 Milling Edition .................................................. N53 Endmilling Edition ........................................... N59 Drilling Edition ................................................. N60 CBN Edition ..................................................... N65 References ....................................................... N69

N35

Technical Guidance The Basics of Turning, Turning Edition

■ Calculating Cutting Speed

■ Calculating Power Requirements

f

(1) Calculating rotation speed from cutting speed

n : Spindle Speed (min -1 ) v c : Cutting speed (m/min) D m : Inner/outer diameter of workpiece (mm) X : π ≈ 3.14

P c : Power requirements (kW) v c : Cutting speed (m/min) f : Feed Rate (mm/rev) a p : Depth of cut (mm) k c : Specific cutting force (MPa) H : Required horsepower (HP) V : Machine efficiency (0.70 to 0.85)

1,000 × v c X × D m

n =

v c × f × a p × k c 60 × 10 3 × V

P c =

Example: v c =150m/min, D m =100mm n = 1,000 × 150 = 478 (min -1 ) 3.14 × 100

P c 0.75

N

H =

Feed Direction

· n : Spindle speed (min -1 ) · v c : Cutting speed (m/min) · f

(2) Calculating cutting speed from rotational speed

● Rough value of kc Aluminum: 800MPa

: Feed rate per revolution (mm/rev)

X × D m × n 1,000

· a p : Depth of cut (mm) · D m : Diameter of workpiece (mm)

v c =

Refer to the above table

General steel: 2,500 to 3,000MPa Cast iron: 1,500MPa

■ Three cutting force components

■ Relation between cutting speed and cutting force

■ Relation between feed rate and specific cutting force (for carbon steel)

Rake Angle: -10°

8,000

1,600

Traverse Rupture Strength

800MPa 600MPa 400MPa

F f

800

Rake Angle: 0°

6,000

0

F p

0 80 160

240

Cutting Speed (m/min)

F c : Principal force F f : Feed force F p : Back force

F c

■ Relation between rake angle and cutting force

4,000

● Calculating cutting force

P : Cutting force (kN) k c : Specific cutting force (MPa) q : Chip area (mm 2 )

2,800

k c × q 1,000

P =

2,000

2,400

k c × a p × f 1,000

a p : Depth of Cut (mm) f : Feed Rate (mm/rev)

=

2,000

1,600

- 10 - 20

20 10 0

0 0.1 0.04

0.2

0.4 Feed Rate f (mm/rev)

Rake angle (degrees)

When feed rate decreases, specific cutting force increases.

● Theoretical (geometrical) surface roughness ■ Machined Surface Roughness

■ Relation between nose radius and 3-part force

● Ways to improve surface finish roughness (1) Use an insert with a larger nose radius (2) Optimise the cutting speed and feed rate so that built-up edges do not occur (3) Select an appropriate insert grade (4) Use wiper insert

4000

Principal Force

3500

h : Theoretical surface roughness (μm) f : Feed rate per revolution (mm/rev) RE: Nose radius (mm)

f 2

× 10 3

h =

8 × RE

Feed Force

1500

1000

Back Force

500

.0157 .0315 .0472 .0630 Nose Radius (inch) Large nose radius increases back force.

f

RE

Part Material: Alloy Steel (38HS) Insert: TNGA43 ○○ Holder: PTGNR2525-43 Cutting Conditions: v c =330 SFM, a p = .157", f = 0.018 IPR

■ Actual surface roughness Steel: Theoretical surface roughness × 1.5 to 3 Cast iron: Theoretical roughness × 3 to 5

N36

Technical Guidance Forms of Tool Failure and Tool Life, Turning Edition

■ Forms of Tool Failure

Classification No. Name of Failure

Major Causes of Failure

(10)

Failure Caused by Mechanical Factors Failure Caused by Thermal and

(1) to (5) (6) (7)

Flank Wear Chipping Fracture

Wear caused by the scratching effect of hard grains contained in the work material Fine breakages caused by high cutting loads or vibration Large breakage caused by the impact of an excessive mechanical force acting on the cutting edge

(9)

(8)

(4)

(11)

(5)

N

(10)

(8) (9)

Crater wear Plastic deformation Thermal cracking Built-up edges

Cutting chips removing tool material as it flows over its top rake at high temperatures Deformation of cutting edge due to softening at high temperatures Fatigue from rapid, repeated heating and cooling cycles during interrupted cutting Work material is pressure welded on the top face of the cutting edge

(6)

(7)

(2) (3)

(1)

(10) (11)

Chemical Reactions

■ Tool Wear Curve

Forms of Tool Wear

Flank wear

Crater wear on rake face

Long chips Fracture due to decreased strength

Initial wear

Burrs occur

Crater wear K T

Sudden increase in wear

Poor surface roughness

Side flank wear V N1

Rake Face Wear

Steady wear

Face flank wear V N2

Cutting Time (T) (min)

Cutting Time (T) (min)

Average flank wear V B

Flank Wear

· Wear increases rapidly right after starting cutting, then moderately and proportionally, and then rapidly again after a certain value

· Wear increases proportionately to the cutting time

Edge wear V C

Higher cutting force

Poor dimensional accuracy Burrs occur

■ Tool Life (V-T)

· This double logarithm graph shows the relative tool life (T) with the specified wear over a range of cutting speeds (Vc) on the X axis, and the cutting speed along the Y axis

Flank Wear

Crater wear

v c1

v c2

v c3

v c1

v c2

v c3

v c4

v c4

V B

K T

T 1

T 2

T 3

T 4

T' 1 T' 2

T' 3

T' 4

Cutting Time (min)

Cutting Time (min)

In v c1 In v c2 In v c3 In v c4

In v c1 In v c2 In v c3 In v c4

InT 1

InT 2

InT 3

InT 4

InT' 1

InT' 2

InT' 3

InT' 4

Lifetime (min)

Lifetime (min)

N37

Technical Guidance Cutting Edge Failure and Countermeasures, Turning Edition

■ Insert Failure and Countermeasures Insert Failure

Cause

Countermeasures

Flank Wear

· Tool grade lacks wear resistance

· Select a more wear-resistant grade P30 → P20 → P10 K20 → K10 → K01 · Increase rake angle · Decrease cutting speed · Increase feed rate

· Cutting speed is too fast · Feed rate is far too slow

N

Crater Wear

· Tool grade lacks crater wear resistance · Rake angle is too small

· Select a more crater wear-resistant grade · Increase rake angle · Change the chipbreaker of the insert · Decrease cutting speed · Reduce feed rate and depth of cut

· Cutting speed is too fast · Feed rate and depth of cut are too large

Cutting Edge Chipping

· Tool grade lacks toughness

· Select a tougher grade P10 → P20 → P30 K01 → K10 → K20 · Increase amount of honing on cutting edge · Reduce rake angle · Reduce feed rate and depth of cut · Select a tougher grade P10 → P20 → P30 K01 → K10 → K20 · Select an insert chipbreaker with a strong cutting edge · Select a holder with a larger approach angle · Select a holder with a larger shank size · Reduce feed rate and depth of cut · Select a grade with less affinity to the work material Coated carbide or cermet grades · Select a grade with a smooth coating · Increase rake angle · Reduce honing · Increase cutting speed · Increase feed rate

· Cutting edge breaks off due to chip adhesion · Cutting edge is not strong enough · Feed rate and depth of cut are too large

Cutting Edge Fracture

· Tool grade lacks toughness

· Cutting edge is not strong enough

· Holder is not strong enough

· Feed rate and depth of cut are too large

Adhesion/Built-up Edges

· Inappropriate grade selection

· Cutting edge is not sharp enough

· Cutting speed is too slow · Feed rate is too slow

Plastic Deformation

· Tool grade lacks thermal resistance

· Select a more crater wear-resistant grade · Increase rake angle · Decrease cutting speed · Reduce feed rate and depth of cut · Supply sufficient coolant

· Cutting speed is too fast · Feed rate and depth of cut are too large · Not enough coolant

Notch Wear

· Tool grade lacks wear resistance

· Select a more wear-resistant grade P30 → P20 → P10 K20 → K10 → K01 · Increase rake angle · A lter depth of cut to shift the notch location

· Rake angle is too small · Cutting speed is too fast

N38

Technical Guidance Chip Control and Countermeasures, Turning Edition

■ Type of Chip Generation Flowing Shearing

■ Type of Chip Control

Depth of cut

A

B

C

D

E

Tearing

Cracking

Large

Classification of chip shapes

Work Material

Work Material

Work Material

Work Material

Small

Continuous chips with good surface finish General cutting of steel and light alloy

Chip is sheared and separated by the shear angle Steel, stainless steel (low speed)

Chips appear to be torn from the surface Steel, cast iron (very low speed, very small feed rate)

Chips crack before reaching the cutting point Cutting of general cast iron and carbon

NC lathe (for automation) General-purpose lathe (for safety)

H H S S J

H S S S to J H

N

Good: C type, D type

Large Large Small Large

Deformation of work material Rake angle Depth of cut Cutting speed

Small Small Large Small

A type: Twines around the tool or workpiece, damaging the machined surface and affecting safety B type: Causes problems in the automatic chip conveyor and chipping occurs easily E type: Causes spraying of chips and poor surface finish due to chattering, along with chipping, large cutting force and high temperatures {

Poor

■ Factor of Improvement of Chip Control (1) Increase feed rate ( f )

.1575

t 1

t 2

f 2

f 1

.0787

f: : When f 2 > f 1, t 2 > t 1

When the feed rate increases, the chip thickness (t) increases and chip control improves.

.0039

.0079

.0118

.0157

0197

Feed Rate f (IPR)

(2) Decrease side cutting edge ( : )

θ 2 :

θ 1 :

45°

t 1

t 2

f

f

: When : 2 < : 1 , t 2 > t 1

15°

Even if the feed rate is the same, a smaller side cutting edge angle makes chips thicker and chip control improves.

.0079

.0098

.0118

.01378

Feed Rate f (IPR)

(3) Reduce nose radius (RE)

t 2

t 1

.0630

RE2

RE1

Corner Small radius

Corner Large radius

f

f

RE : When RE2 < RE1, t 2 > t 1

.0315

Even if the feed rate is the same, a smaller nose radius makes chips thicker and chip control improves. * Cutting force increases proportionately to the length of the contact surface. Therefore, a larger nose radius increases back force which induces chattering. A smaller nose radius produces a rougher surface finish at the same feed rate.

.0157

.0197

.0394

.0591

.0787

Depth of Cut a p (inch)

N39

Recommended Running Conditions Recommended First Choice

Machining Parameters Gen. Purpose .008 ~ .020 IPR .040” ~ .200” D.O.C. CUTTING SPEED SFM

Finishing .002 ~ .008 IPR. .005” ~ .060” D.O.C.

Roughing .015 ~ .026 IPR .200” D.O.C.

Material

Hardness

Grade

T1500A T1500Z T2500Z

800~1700 800~1800 600~1500 700~1800 800~1600 700~1600 350~1200 500~1200 300~700

800~1450 800~1550 600~1300 700~1600 800~1400 700~1500 350~1000 500~1000 300~900 500~900 700~1200 700~1300 500~1100 700~1400 700~1100 700~1400 350~900 500~900 300~800 500~800 400~650 400~750 300~750 600~900 400~550 600~900 250~450 300~450 200~450 200~400

- - -

AC8015P AC810P AC8020P AC8025P AC820P AC8035P AC830P T1500A

700~1200 700~1100 700~1200 350~900 400~900 300~900 400~850

N

<250

-

700~1300 700~1450 500~1200 700~1500 700~1200 700~1500 350~1000 500~1000 300~700

- - -

LOW CARBON STEELS

T1500Z T2500Z

AC8015P AC810P AC8020P AC8025P AC820P AC8035P AC830P T1500A

700~1200 600~950 700~1200 350~800 400~800 300~800 400~750

1005, 1006, 1008, 1009, 1010, 1011, 1012, 1013, 1015, 1016, 1017, 1018, 1019, 1020, 1021, 1022, 1023, 1025, 1026, 1029, 1108, 1109, 1110, 1115, 1116, 1117, 1118, 1119, 1211, 1212, 1213, 1215, 1513, 1518, 1522

220~350

-

400~750 400~800 300~750 600~1000 400~600 600~1000 250~500 300~500 200~450 250~450 400~1600 400~1400 1000~1650 1000~1750 600~1200 600~1600 1000~1500 600~1500 600~1400 800~1400

- - -

T1500Z T2500Z

AC8015P AC810P AC8020P AC8025P AC820P AC8035P AC830P NB150H

500~800 350~550 500~800 250~450 300~450 200~450 200~400

HRc 35~55

- -

- - - - -

NB90S T1500A T1500Z T2500Z

1000~1550 1000~1650 500~1100 600~1500 1000~1400 600~1500 550~1300 750~1300 300~1000 750~1200 800~1200 800~1300 500~1100 700~1400 800~1100 600~1200

AC8015P AC810P AC8020P AC8025P AC820P AC8035P AC830P T1500A

600~1400 900~1300 600~1200 500~1100 600~1100 300~1000 650~1000

<250

LOW/MEDIUM CARBON STEEL -- LEADED

300~700

-

10L18, 10L45, 10L50, 11L17, 11L37, 11L41, 11L44, 12L13, 12L14, 12L15

900~1350 900~1450 600~1200 700~1500 900~1200 700~1500 600~1000 800~1000 300~700

- - -

T1500Z T2500Z

AC8015P AC810P AC8020P AC8025P AC820P AC8035P AC830P

700~1200 700~1000 600~1200 450~900 650~900 300~800 650~900

250~350

500~900 700~900 300~800 700~900

-

Chipbreaker Preference

ESE / ESU / ELU EGE / EGU

EME / EMU

N40

Recommended Running Conditions Recommended First Choice

Machining Parameters Gen. Purpose .010 ~ .020 IPR .040” ~ .200” D.O.C. CUTTING SPEED SFM

Finishing .002 ~ .008 IPR. .005” ~ .060” D.O.C.

Roughing .015 ~ .026 IPR .200” D.O.C.

Material

Hardness

Grade

T1500A T1500Z T2500Z

900~1450 900~1550 600~1200 700~1500 900~1300 600~1500 600~1000 800~1000 300~700

900~1300 900~1450 500~1100 700~1400 900~1200 600~1200 350~900 500~900 300~800 500~800 700~1200 700~1300 500~1100 700~1400 700~1100 600~1200 350~900 500~900 300~800 500~850 400~900 400~1000 300~800 500~900 400~750 500~900 300~700 350~700 200~500 350~600

- - -

AC8015P AC810P AC8020P AC8025P AC820P AC8035P AC830P T1500A

700~1200 800~1000 600~1000 350~800 450~800 300~800 400~700

N

<250

-

800~1300 800~1450 500~1200 700~1500 800~1200 600~1500 400~1000 600~1000 300~700

- - -

MEDIUM CARBON STEELS

T1500Z T2500Z

AC8015P AC810P AC8020P AC8025P AC820P AC8035P AC830P T1500A

700~1200 600~1000 600~1000 350~900 450~900 300~800 400~800

1030, 1033, 1035, 1037, 1038, 1039, 1040, 1042, 1043, 1044, 1045, 1046, 1049, 1050, 1053, 1055, 1132, 1137, 1139, 1140, 1141, 1144, 1145, 1146, 1151, 1524, 1525, 1526, 1527, 1536, 1541, 1547, 1548, 1551, 1552

220~350

-

600~1000 600~1100 400~900 700~1200 500~900 600~1200 350~750 400~750 200~500

- - -

T1500Z T2500Z

AC8015P AC810P AC8020P AC8025P AC820P AC8035P AC830P NB150H

500~800 350~700 500~900 300~550 300~550 200~500 300~500

HRc 35~55

-

400~1600 400~1400 800~1550 800~1650 600~1400 800~1600 800~1400 600~1400 600~1200 800~1200 300~700

- -

- - - - -

NB90S T1500A T1500Z T2500Z

800~1450 800~1550 500~1300 800~1500 800~1300 600~1200 500~1000 700~1000 300~800 650~950 750~1300 750~1450 500~1200 700~1400 750~1200 600~1200 450~1000 650~1000 300~800 600~1000

AC8015P AC810P AC8020P AC8025P AC820P AC8035P AC830P T1500A

600~1200 700~1100 600~1200 400~900 600~900 300~800 550~800

<250

MEDIUM HIGH CARBON STEELS --LEADED

-

41L30, 41L40, 41L45, 41L47, 41L50, 43L40, 41L50, 43640, 51L32, 52L100, 86L20, 86L40

800~1450 800~1550 600~1300 700~1500 800~1300 600~1400 500~1100 700~1100 300~700

- - -

T1500Z T2500Z

AC8015P AC810P AC8020P AC8025P AC820P AC8035P AC830P

600~1200 650~1000 600~1200 400~900 550~900 300~800 500~800

250~350

-

Chipbreaker Preference

ESE / ESU / ELU EGE / EGU

EME / EMU

N41

Recommended First Choice Recommended Running Conditions

Machining Parameters Gen. Purpose .010 ~ .020 IPR .040” ~ .200” D.O.C. CUTTING SPEED SFM

Finishing .002 ~ .012 IPR. .005” ~ .060” D.O.C.

Roughing .015 ~ .026 IPR .200” D.O.C.

Material

Hardness

Grade

T1500A T1500Z T2500Z

700~1200 700~1300 500~1100 700~1400 700~1100 600~1500 350~950 600~950 250~650

700~1100 700~1200 500~1000 700~1200 700~1000 600~1200 350~850 500~850 300~800 500~800 600~1000 600~1100 400~900 700~1100 600~900 600~1200 350~800 450~800 200~700 400~750 300~550 300~650 300~600 500~900 300~500 600~1000 200~450 200~450 150~400 200~400

- - -

N

AC8015P AC810P AC8020P AC8025P AC820P AC8035P AC830P T1500A

600~1000 500~800 600~1000 350~800 450~800 300~800 400~700

<250

ALLOY STEELS– MEDIUM CARBON

-

600~1100 600~1200 400~1000 700~1200 600~1000 600~1200 350~900 500~900 250~650

- - -

T1500Z T2500Z

1340, 1345, 4042, 4047, 4140, 4142, 4145, 4147, 4340, 50B40, 40B44, 5046, 50B46, 5140, 5145, 5147, 81B45,

AC8015P AC810P AC8020P AC8025P AC820P AC8035P AC830P T1500A

600~900

-

250~ 350

600~1000 350~750 400~750 200~700 300~700

8640, 8642, 8645, 86B45, 8740, 8742,

4150, 4161, 50B50, 4060, 50B60, 5150, 5155, 5160, 51B60, 6150, 8650, 8655, 8660, 9254, 9255, 9260

-

300~650 300~800 300~750 600~900 300~600 600~1000 250~500 250~500 150~400 250~400 500~1000 500~900 800~1300 800~1450 600~1200 700~1500 800~1250 600~1400 350~850 450~850 250~650

- - -

T1500Z T2500Z

AC8015P AC810P AC8020P AC8025P AC820P AC8035P AC830P NB150H

500~800 200~500 500~900 150~400 150~400 150~400 150~400

HRc 35~55

- -

- - - - -

NB90S T1500A T1500Z T2500Z

700~1200 700~1300 500~1100 700~1400 700~1150 600~1200 250~750 300~750 200~700 300~750 600~1100 600~1200 400~1000 700~1300 600~1100 600~1200 350~750 500~750 200~700 450~700

AC8015P AC810P AC8020P AC8025P AC820P AC8035P AC830P T1500A

600~1200 600~1000 600~1200 250~700 300~700 200~650 300~650

<250

HIGH CARBON STEELS

-

50100, 51100, 52100, M-50

700~1200 700~1300 500~1100 700~1400 700~1150 600~1300 350~550 550~850 200~500

- - -

T1500Z T2500Z

AC8015P AC810P AC8020P AC8025P AC820P AC8035P AC830P

600~1000 500~800 600~1000 350~650 400~650 200~600 400~600

250~350

-

Chipbreaker Preference

ESE / ESU / ELU EGE / EGU

EME / EMU

N42

Recommended First Choice Recommended Running Conditions

Machining Parameters Gen. Purpose .010 ~ .020 IPR .040” ~ .200” D.O.C. CUTTING SPEED SFM

Finishing .002 ~ .012 IPR. .005” ~ .060” D.O.C.

Roughing .015 ~ .026 IPR .200” D.O.C.

Material

Hardness

Grade

T1500A T1500Z T2500Z

500~800 500~950 400~900 600~1100 500~900 600~1200 350~700 400~700 300~700

350~800 350~900 300~800 600~1000 350~800 600~1200 300~650 350~650 200~600 350~650 450~950 350~900 300~800 600~1000 450~800 600~1100 300~650 400~650 200~600 300~650 300~550 200~550 200~500 500~800 200~500 500~800 150~350 200~350 150~350 200~350

- - -

N

AC8015P AC810P AC8020P AC8025P AC820P AC8035P AC830P T1500A

600~900 300~750 600~1000 250~600 300~600 200~600 300~600

<250

-

650~1000 500~900 300~800 600~1100 500~900 600~1200 300~750 400~750 300~700

- - -

T1500Z T2500Z

AC8015P AC810P AC8020P AC8025P AC820P AC8035P AC830P T1500A

600~900 350~750 600~1000 200~600 300~600 200~600 200~600

250~350

TOOL STEELS DIE STEELS

-

350~550 300~600 250~550 500~800 300~600 600~900 150~400 200~400 150~350 200~400 300~800 300~600 600~1000 550~1050 500~1000 600~1100 500~950 600~1200 300~700 400~700 200~600

- - -

T1500Z T2500Z

AC8015P AC810P AC8020P AC8025P AC820P AC8035P AC830P NB150H

500~800 200~500 500~800 150~300 150~300 150~300 150~300

HRc 36-50

- -

- - - - -

NB90S T1500A T1500Z T2500Z

450~900 450~950 400~900 600~1000 350~850 600~1100 250~700 350~700 200~600 350~700 350~850 350~950 300~900 600~1000 350~850 500~1000 200~700 300~700 150~600 300~650

AC8015P AC810P AC8020P AC8025P AC820P AC8035P AC830P T1500A

600~900 300~700 600~1000 200~650 300~650 200~600 300~600

250~300

HIGH STRENGTH STEELS

-

300M, 4340, 4340M 4340V, H13, H11, 50100, 51100, 52100, M-50

550~900 500~1000 400~900 600~1200 500~900 600~1200 300~800 400~800 150~600

- - -

T1500Z T2500Z

AC8015P AC810P AC8020P AC8025P AC820P AC8035P AC830P

600~1000 300~800 500~900 200~650 250~650 150~600 250~600

HRc 35-45

-

Chipbreaker Preference

ESE / ESU / ELU EGE / EGU

EME / EMU

N43

Recommended First Choice Recommended Running Conditions

Machining Parameters Gen. Purpose .010 ~ .020 IPR .040” ~ .200” D.O.C. CUTTING SPEED SFM

Finishing .002 ~ .012 IPR. .005” ~ .060” D.O.C.

Roughing .015 ~ .026 IPR .200” D.O.C.

Material

Hardness

Grade

T1500A T1500Z T2500Z

350~850 300~900 250~850 300~750 300~750 300~700 250~550 250~650 250~500 300~500

300~650 300~800 250~750 300~700 300~700 300~650 300~550 250~600 250~500 300~500 300~500 500~800 400~700 500~800 250~700 300~600 200~600 250~600 300~700 300~650 300~550 300~600 300~750 300~850 250~800 300~700 300~700 450~650 250~600 400~600 300~550 300~550 300~550 500~800 400~700 500~800 250~700 300~600 200~600 250~600 300~700 400~700 300~600 250~550

- - - - - -

N

AC5005S AC5015S AC510U AC520U AC5025S AC530U

300~550

-

250~500

EH510 EH520

-

STAINLES STEEL 300 SERIES AUSTENITIC

-

300~500 500~700

160~280

AC8015P AC810P AC8020P AC8025P AC820P AC8035P AC830P AC6020M

500~900 450~750 500~900 300~700

-

500~700 250~600 300~550 200~550 200~550 300~650 300~600 300~500 300~500

- - -

350~800

AC6030M 350~750

AC630M AC6040M

400~650 350~650 300~850 300~950 250~900 300~750 300~750 500~750 250~650 400~650 300~600 300~600 300~600 500~900

T1500A T1500Z T2500Z

- - - - - - -

AC5005S AC5015S AC510U AC5025S AC520U AC530U

300~500 300~500

EH510 EH520

-

STAINLESS STEEL 400 SERIES MARTENSITIC

300~500 500~700

160~260

AC8015P AC810P AC8020P AC8025P AC820P AC8035P AC830P AC6020M

-

-

500~900 300~700 450~650

500~700 250~600 300~550 200~550 200~550 300~650 400~650 300~550 250~500

- -

400~750

AC6030M 350~750

AC630M AC6040M

300~650 350~600

Chipbreaker Preference

EEF / ESU EEG / EEX / EUP EEM / EMU

N44

Recommended First Choice Recommended Running Conditions

Machining Parameters Gen. Purpose .008 ~ .016 IPR .040” ~ .150” D.O.C. CUTTING SPEED SFM

Finishing .002 ~ .010 IPR. .005” ~ .060” D.O.C.

Roughing .010 ~ .020 IPR .120” ~ .250” D.O.C.

Material

Hardness

Grade

T1500A T1500Z T2500Z

200~600 200~700 200~700 300~750 300~750 400~700 300~600 250~750 300~550 300~600

200~550 200~650 200~650 300~700 300~700 400~650 300~600 250~700 300~500 300~600 300~550 400~800 250~750 400~800 300~700 200~600 200~700 200~600 400~750 400~700 300~600 250~650 200~500 200~650 200~650 300~650 300~650 250~600 250~550 250~600 250~500 200~450 200~450 400~800 200~700 400~800 300~650 200~550 200~600 200~550 350~700 200~650 200~600 200~650

- - - -

N

AC5005S AC5015S AC510U AC520U AC5025S AC530U

300~700

-

300~550 250~600 300~500

EH510 EH520

-

-

250~500

260~380

AC8015P AC810P AC8020P AC8025P AC820P AC8035P AC830P AC6020M

400~900 350~800 400~900 300~750

- - -

300~700 200~600 200~700 200~600 400~700 400~650 300~550 250~600

- - -

400~800

AC6030M 400~750

AC630M AC6040M

300~650 250~700 200~600 200~700 200~700 300~700 300~700 300~650 300~600 250~650 250~550 200~500

STAINLESS STEEL 400 SERIES MARTENSITIC cont.

T1500A T1500Z T2500Z

- - - -

AC5005S AC5015S AC510U AC520U AC5025S AC530U

300~650

-

250~550 250~600 250~500

EH510 EH520

-

-

200~400

HrC 36~46

AC8015P AC810P AC8020P AC8025P AC820P AC8035P AC830P

400~800 200~750 400~800 300~700

- - -

300~600 200~500 200~550 200~500 350~650 200~600 200~550 200~600

- - -

AC6020M 350~800

AC6030M AC630M AC6040M

200~700 200~650 200~650

Chipbreaker Preference

EEF / ESU EEG / EEX / EUP EEG / EMU

N45

Recommended First Choice Recommended Running Conditions

Machining Parameters Gen. Purpose .008 ~ .016 IPR .040” ~ .150” D.O.C. CUTTING SPEED SFM

Finishing .002 ~ .010 IPR. .005” ~ .060” D.O.C.

Roughing .010 ~ .020 IPR .120” ~ .250” D.O.C.

Material

Hardness

Grade

T1500A T1500Z T2500Z AC5005S AC5015S AC510U AC520U AC5025S AC530U EH510 EH520 AC8015P AC810P AC8020P AC8025P AC820P AC8035P AC830P AC6020M AC630M AC6040M T1500A T1500Z T2500Z AC5005S AC5015S AC510U AC520U AC5025S AC530U AC8015P AC810P AC8020P AC8025P AC820P AC8035P AC830P AC6020M AC630M AC6040M T1500A T1500Z T2500Z AC5005S AC5015S AC510U AC520U AC5025S AC530U AC8015P AC810P AC8020P AC8025P AC820P AC8035P AC830P AC6030M AC630M AC6040M EH510 EH520

300~800 300~900 250~800 300~900 300~900 400~900 400~800 250~800 300~600 350~700 400~900 400~800 400~900 300~750 - 300~700

250~700 250~750 200~700 300~900 300~900 350~850 400~750 250~750 300~550 325~600 300~650 400~800 400~700 400~800 300~700 300~650 200~700 300~650 300~750 250~700 200~600 200~650 200~600 300~750 250~700 300~800 300~800 300~750 300~700 250~750 250~550 250~400 250~450 400~800 250~750 400~800 300~700 200~600 200~650 200~600 300~700 200~650 300~600 200~600 300~600 300~650 250~600 300~750 300~750 300~650 300~625 200~700 250~500 400~750 200~650 400~750 300~700 200~525 200~550 200~500 350~750 200~650 300~600 200~600

- - - -

300~750

N

-

400~700 250~700 300~500

-

250~550

160~260

- - -

300~700 300~600 200~650 300~600 300~700 250~650 200~550 200~600

- -

300~800

AC6030M 250~750

200~650 200~700 200~700 300~800 250~750 300~900 300~900 300~850 300~750 250~800 250~600 250~450 400~850 300~800 400~850 300~750 - 300~600

- - - -

300~700

-

300~600 250~700 250~500

STAINLESS STEEL PRECIPITATION HARDENING

-

250~425

25~36

- - -

15-5PH, 16-6PH, 17-4, 17-7PH, 13-8Mo

300~650 200~550 200~550 200~500 300~650 200~600 300~550 200~550

- -

350~750

AC6030M 250~700

300~650 250~700 300~650 300~700 250~700 300~750 300~750 300~650 300~650 200~700 250~550 400~800 200~750 400~800 300~750 200~550

- - - -

300~650

-

250~600 200~600 250~500

- - -

36~46

300~650 200~500 200~500 200~450 350~650 200~600 300~550 200~600

- -

AC6020M 350~800

250~750 300~650 200~700

N46

Chipbreaker Preference

EEF / ESU EEG / EEX / EUP EEG / EMU

Recommended First Choice Recommended Running Conditions

Machining Parameters Gen. Purpose .008 ~ .016 IPR .040” ~ .150” D.O.C. CUTTING SPEED SFM

Finishing .002 ~ .010 IPR. .005” ~ .060” D.O.C.

Roughing .010 ~ .020 IPR .120” ~ .250” D.O.C.

Material

Hardness

Grade

T1500A T1500Z T2500Z

200~600 200~700 200~600 250~600 200~750 200~750 200~750 200~750 200~750 200~600 300~800

200~550 200~650 200~600 200~500 200~750 200~750 200~750 200~700 200~700 200~550 250~750 250~650 200~600

- - -

STAINLESS STEEL WROUGHT AUSTENITIC

N

EH510/520 AC5005S AC5015S AC510U AC520U AC5025S AC530U AC6020M

150~400 200~700 200~700 200~700 200~700 200~700 200~500 250~650 200~600 200~500

NITRONIC 32 NITRONIC 33 NITRONIC 40 NITRONIC 50 NITRONIC 60

160~260

AC6030M 250~750

AC6040M WX1500 WX2000 SN1000S EH510/520 AC5005S AC5015S AC510U AC520U AC5025S AC530U WX2000 SN1000S EH510/520 AC5005S AC5015S AC510U AC520U AC5025S AC530U EH510/520 AC5005S AC5015S AC510U AC520U AC5025S AC530U WX2000 SN1000S EH510/520 AC5005S AC5015S AC510U AC520U AC5025S AC530U WX2000 SN1000S

200~750 600~1500 400~1500 600~1200 40~130 100~300 100~300 90~200

-

-

HIGH TEMP. ALLOYS

400~1200 600~1100

400~1000 600~900

Nickel Base, Wrought Haynes Alloy 263, Incoloy Alloy 901, 903 Inconel Alloy 617, 625, 702, 706, 718, 721, 722, X-750, 751, M252 Nimonic 75, 80 Waspaloy

30~110 90~250 90~250 80~180 70~150 70~225 70~140

30~90 80~200 80~200 80~150 50~120 60~200 50~120

25~36

90~180 80~250 80~160

400~1500 600~1200 100~190 100~300 100~300 120~230 120~230 100~250 80~180 60~140 100~250 100~250 80~180 80~180 75~225 70~150 400~1500 600~1200 60~130 100~250 100~250 70~200 70~170 75~225

400~1200 600~1100

400~1000 600~900

80~150 90~250 90~250 90~190 90~190 80~225 80~150 50~130 80~200 80~200 60~150 60~150 70~200 50~140

70~130 80~200 80~200 80~170 80~170 70~200 50~150 40~110 60~175 60~175 50~140 50~140 70~200 50~120

Nickel Base, Wrought Hastelloy Alloy

25~36

Nickel Base, Wrought Incoloy Alloy 804, 825 Inconel Alloy 600, 601 Refractaloy 26

36~46

400~1200 600~1100

400~1000 600~900

40~120 80~200 80~200 50~180 50~150 70~200 50~130

30~100 60~175 60~175 40~150 40~130 70~200 40~120

Nickel Base, Cast Hastalloy Alloy

36~46

60~150

400~1500 600~1200

400~1200 600~1100

400~1000 600~900

Chipbreaker Preference

EEF / ESU EEG / EEX / EUP EEG / EMU

N47

Recommended First Choice Recommended Running Conditions

Machining Parameters Gen. Purpose .008 ~ .016 IPR .040” ~ .150” D.O.C. CUTTING SPEED SFM

Finishing .002 ~ .010 IPR. .005” ~ .060” D.O.C.

Roughing .010 ~ .020 IPR .120” ~ .250” D.O.C.

Material

Hardness

Grade

AC5005S AC5015S AC510U AC520U AC5025S AC530U WX1500 WX2000 SN1000S AC5005S AC5015S AC510U AC520U AC5025S AC530U WX1500 WX2000 SN1000S AC5005S AC5015S AC510U AC520U AC5025S AC530U WX1500 WX2000 SN1000S AC5005S AC5015S AC510U AC520U AC5025S AC530U WX1500 WX2000 SN1000S EH510/520 DL1000 AC5005S AC5015S AC510U H1 AC520U AC5025S AC530U EH510/520 DL1000 AC5005S AC5015S AC510U H1 AC520U AC5025S AC530U DA1000* DA2200* DA150* EH510/520 AC5005S AC5015S AC510U AC520U AC5025S H1 DL1000

100~300 100~300 120~220 120~220 100~250 80~150 600~1500 400~1500 600~1200 100~300 100~300 120~210 120~210 100~250 80~180 600~1500 400~1500 600~1200 100~300 100~300 110~210 110~210 100~250 80~180 600~1500 400~1500 600~1200 100~300 100~300 110~200 110~200 100~250 80~180 600~1500 300~1500 600~1200 100~180 100~180 100~300 100~300 100~300 100~190 100~190 100~250 80~150 100~180 100~180 100~300 100~300 100~300 120~210 120~210 100~250 80~170

80~250 80~250 100~200 100~200 75~225 80~120 400~1200 600~1100 80~250 80~250 -

80~225 80~225 80~180 80~180 70~200 70~100

180~230

N

-

400~1000 600~900 80~225 80~225

HIGH TEMP ALLOYS IRON BASE, WROUGHT

90~190 90~190 75~225 80~160

75~160 75~160 70~200 50~120

250~320

-

-

400~1200 600~1100 80~250 80~250 100~180 100~180 75~225 70~150 400~1200 600~1100 80~250 80~250 100~170 100~170 75~225 80~150 - 300~1200 600~1100 90~160 90~160 - 80~250 80~250 80~250 90~170 90~170 75~225 70~130 90~160 90~160 80~250 80~250 80~250 120~190 120~190 75~225 70~150

400~1000 600~900 80~225 80~225

80~160 80~160 70~200 50~120

COBALT BASE 250-320

-

400~1000 600~900 80~225 80~225

80~150 80~150 70~200 50~120

STELLITE

250-320

-

300~1000 600~900 70~140 70~140 80~200 80~200 80~200 80~140 80~140 70~200 50~120 70~140 70~140 80~200 80~200 80~200 100~160 100~160 70~200 50~120

PURE TITANIUM 250-320

TITANIUM ALLOY Ti-6AL-4V

250-320

1000~10000 1000~10000 1000~10000 500~2000 500~3000 800~1700 500~1800 500~1600

1000~10000 1000~10000 1000~10000 500~2000 500~3000 700~1200 500~1600 500~1400

- - -

500~2000 500~3000 700~1000 500~1400 500~1200 500~1000 500~1000 500~1200 700~1000

ALUMINUM ALLOYS BRASS ALLOYS

250-320

500~1500 500~1500 500~1600 800~1500

500~1200 500~1200 500~1400 700~1200

G10E

Chipbreaker Preference

EEF / ESU EEG / EEX / EUP EEG / EMU

N48

* mark: To be replaced by a new product, made to order or discontinued (please confirm stock availability)

Recommended First Choice Recommended Running Conditions

Machining Parameters Gen. Purpose .008 ~ .016 IPR .040” ~ .150” D.O.C. CUTTING SPEED SFM

Finishing .002 ~ .010 IPR. .005” ~ .060” D.O.C.

Roughing .010 ~ .020 IPR .120” ~ .250” D.O.C.

Material

Hardness

Grade

DA1000* DA2200*

2000~3300 2000~3300 2000~3300 500~2000 500~2000 800~1300 1000~1800 1000~1800 1200~1700 1200~1700 1000~1800 800~1100 2000~3300 2000~3300 2000~3300 500~2000 500~2000 800~1100 1000~1800 800~1500 900~1300 900~1300 800~1500 800~900 2000~3300 2000~3300 2000~3300 500~2000 500~2000 250~550 1000~1800 400~1000 450~750 450~750 400~1000 250~350

2000~3300 2000~3300 2000~3300 500~2000 500~2000 800~1200 1000~1600 1000~1600 1100~1500 1100~1500 1000~1600 800~1000 2000~3300 2000~3300 2000~3300 500~2000 500~2000 600~950 1000~1600 800~1300 800~1150 800~1150 800~1300 600~750 2000~3300 2000~3300 2000~3300 500~2000 500~2000 200~500 1000~1600

- - -

COPPER ALLOYS WROUGHT

DA150*

N

H1

500~2000 500~2000 700~1100 800~1400 800~1400 900~1300 900~1300 800~1400 700~900

DL1000

145, 147, 173, 187, 191, 314, 316, 330, 332, 335, 340, 342, 349, 350, 353, 356, 360, 365, 366, 367, 368, 370, 377, 385, 482, 485, 544, 623, 624, 638, 642, 782

EH510/520 AC5005S AC5015S AC510U AC520U AC5025S

G10E

DA1000* DA2200*

- - -

DA150*

H1

500~2000 500~2000 500~850 800~1400 700~1200 700~1000 700~1000 700~1200 500~650

190, 226, 230, 240, 260, 268, 270, 280, 425, 435, 442, 443, 444, 445, 464, 465, 466, 467,613, 618, 630, 632, 651, 655, 667, 675, 687, 694, 770

DL1000

EH510/520 AC5005S AC5015S AC510U AC520U AC5025S

G10E

DA1000* DA2200*

- - -

DA150*

H1

500~2000 500~2000 150~450 800~1400 250~800 300~600 300~600 250~800 150~250

DL1000

411, 413, 505, 512 ,511, 521, 524, 608, 610 ,614, 619, 625, 674, 688, 706, 710 ,715, 7285, 745

EH510/520 AC5005S AC5015S AC510U AC520U AC5025S

300~900 350~650 350~650 300~900 200~300

G10E

Chipbreaker Preference

EEF / ESU EEG / EEX / EUP EEG / EMU

N49

* mark: To be replaced by a new product, made to order or discontinued (please confirm stock availability)

Recommended First Choice Recommended Running Conditions

Machining Parameters Gen. Purpose .008 ~ .016 IPR .040” ~ .150” D.O.C. CUTTING SPEED SFM

Finishing .002 ~ .010 IPR. .005” ~ .060” D.O.C.

Roughing .010 ~ .020 IPR .120” ~ .250” D.O.C.

Material

Hardness

Grade

DA1000* DA2200*

2000~3300 2000~3300 2000~3300 1000~1400 500~2000 1000~1400 1000~1800 1000~1800 1200~1600 1200~1600 1000~1800 1000~1200 2000~3300 2000~3300 2000~3300 700~1100 500~2000 700~1100 800~1500 800~1500 950~1350 950~1350 800~1500 700~900 2000~3300 2000~3300 2000~3300 300~600 500~2000 300~600 400~1000 400~1000 500~850 500~850 400~1000 300~400

2000~3300 2000~3300 2000~3300 850~1250 500~1750 850~1250 1000~1600 1000~1600 1050~1500 1050~1500 1000~1600 850~1050 2000~3300 2000~3300 2000~3300 550~850 500~1750 550~850 800~1300 800~1300 700~1100 700~1100 800~1300 550~650 2000~3300 2000~3300 2000~3300 175~500 500~1500 175~500 300~900

- - -

COPPER ALLOYS, CAST

DA150*

H1

750~1150 500~1500 750~1150 800~1400 800~1400 950~1400 950~1400 800~1400 750~950

N

834, 836, 938, 842, 844, 848, 852, 8545, 8955, 857, 858, 864, 867, 879, 928, 932, 934, 935, 937, 938, 939, 943, 944, 945, 953, 954, 956, 973, 974, 976, 078

DL1000

EH510/520 AC5005S AC5015S AC510U AC520U AC5025S

G10E

DA1000* DA2200*

- - -

DA150*

H1

500~800 500~1500 500~800 700~1200 700~1200 650~1050 650~1050 700~1200 500~600

817, 821, 833, 853, 861, 862, 865, 888, 872, 874, 875, 876, 878, 903, 905, 915, 9022, 923, 9059, 926, 927, 947, 948, 952, 955, 957, 958

DL1000

EH510/520 AC5005S AC5015S AC510U AC520U AC5025S

G10E

DA1000* DA2200*

- - -

DA150*

801, 803, 805, 807, 809, 811, 813, 814, 815, 818, 820 ,822, 824, 825, 826, 827, 828, 863, 902, 907, 909, 910, 911, 913, 916, 917, 962, 963, 964, 966, 993

H1

150~450 500~1000 150~450 250~800 250~800 325~675 325~675 250~800 150~250

DL1000

EH510/520 AC5005S AC5015S AC510U AC520U AC5025S

300~900 350~725 325~725 300~900 175~300

G10E

Chipbreaker Preference

EEF / ESU EEG / EEX / EUP EEG / EMU

N50

* mark: To be replaced by a new product, made to order or discontinued (please confirm stock availability)

Recommended First Choice Recommended Running Conditions

Machining Parameters Gen. Purpose .008 ~ .016 IPR .040” ~ .150” D.O.C. CUTTING SPEED SFM

Finishing .002 ~ .010 IPR. .005” ~ .060” D.O.C.

Roughing .010 ~ .020 IPR .120” ~ .250” D.O.C.

Material

Hardness

Grade

SN2000K SN2100K T2000Z AC405K AC4010K AC4015K AC415K AC4125K AC420K AC700G AC820P

1000~3500 1000~3500 600~1400 700~1700 600~2000 600~1800 600~1600 500~1600 600~1500

800~3500 800~3500 500~1200 700~1500 600~1800 500~1500 500~1300 500~1300 500~1200 400~1200 600~1000 150~300 150~300 800~3500 800~3500 400~1100 600~1500 600~1800 500~1500 500~1200 400~1200 450~1100 300~1200 600~1000 150~300 400~950 600~1500 600~1500 600~1500 600~1800 500~1500 500~1200 500~1200 500~1100 500~1100 600~950 400~750 330~850 500~1500 500~1500 500~1500 600~1400 300~1300 400~1100 300~1100 400~1000 400~900 500~900 300~700

800~2500 800~2500

-

600~1400 600~1600 500~1200 400~1000 400~1100 400~1000 400~900 500~900 100~250 100~250 600~2500 600~2500

N

<220

- -

G10E G10E

200~350 200~350

GRAY CAST IRON

SN2000K SN2100K T1500Z AC405K AC4010K AC4015K AC415K AC4125K AC420K AC700G AC820P

1000~3500 1000~3500 500~1350 600~1600 600~2000 600~1800 550~1600 500~1600 500~1500

-

600~1400 600~1600 500~1200 450~1000 400~1100 400~1000 400~1000 500~900 100~250

>220

- -

G10E

200~300 350~1000 600~1700 600~1700 600~1700 600~2000 600~1800 500~1500 500~1500 500~1400

T1500Z

-

SN2000K SN2100K AC405K AC4010K AC4015K AC415K AC4125K AC420K AC700G AC820P AC510U T1500Z SN2000K SN2100K AC405K AC4010K AC4015K AC415K AC4125K AC420K AC700G AC820P AC510U

500~1100 500~1100 600~1400 600~1600 500~1200 400~1000 400~1100 400~1000 400~1000 600~900 350~600

<220

- -

DUCTILE IRON

500~800 330~900 500~1700 500~1700 500~1700 600~1600 300~1500 400~1300 300~1300 400~1100

-

NODULAR IRON

400~1000 400~1000 500~1100 600~1200 300~1100 300~1000 300~1000 300~900 300~800 450~850 300~600

>220

- -

500~800

Chipbreaker Preference

ENZ / FLAT TOP EGZ / FLAT TOP EGZ / FLAT TOP

N51

* mark: To be replaced by a new product, made to order or discontinued (please confirm stock availability)

Technical Guidance The Basics of Threading, Turning Edition

■ Thread Cutting Methods

Cutting Method

Features

Radial Infeed

· Most common threading technique, used mainly for small pitch threads. · Easy to change cutting conditions such as depth of cut, etc. · Long contact point has a tendency to chatter. · Chip control is difficult. · Considerable damage tends to occur on the trailing edge side.

Trailing Edge

Leading Edge

Feed Direction

Direction of Depth of Cut

Flank Infeed

N

· Effective for large-pitch threads and blemish-prone work material surfaces. · Chips evacuate from one side for good chip control. · The trailing edge side is worn, and therefore the flank is easily worn.

Modified Flank Infeed

· Effective for large-pitch threads and blemish-prone work material surfaces. · Chips evacuate from one side for good chip control. · Inhibits flank wear on trailing edge side.

Alternating Flank Infeed

· Effective for large-pitch threads and blemish-prone work material surfaces. · Wears evenly on right and left cut edges. · Since both edges are used alternately, chip control is sometimes difficult.

■ Troubleshooting for Threading Failure

Cause

Countermeasures

· Tool grade

· Select a more wear-resistant grade

Excessive Wear

· Reduce cutting speed · Use a suitable quantity and concentration of coolant · Change the number of passes · Check whether the cutting edge inclination angle is appropriate for the thread lead angle · Check whether the tool is mounted properly

· Cutting conditions

Uneven Wear on Right and Left Sides

· Tool mounting

· Change to modified flank infeed or alternating flank infeed

· Cutting conditions

Chipping

· Cutting conditions

· If built-up edge occurs, increase the cutting speed

· Biting of chips

· Supply enough coolant to the cutting edge

Breakage

· Increase the number of passes and reduce the depth of cut for each pass · Use separate tools for roughing and finishing · If blemished due to low-speed machining, increase the cutting speed · If chattering occurs, decrease the cutting speed · If the depth of cut of the final pass is too small, make it larger

· Cutting conditions

· Cutting conditions

Poor Surface Roughness

· Tool grade

· Select a more wear-resistant grade

· Inappropriate cutting edge inclination angle

· Select the correct shim to ensure relief on the side of the insert

Inappropriate Thread Shape · Tool mounting

· Check whether the tool is mounted properly

· Shallow depth of cut

· Check the depth of cut

Shallow Thread Depth

· Tool wear

· Check damage to the cutting edge

N52

Technical Guidance The Basics of Milling

■ Parts

Body diameter

Boss diameter

Bore Dia. Keyway Width

Body

External cutting edge (Approach Angle)

Keyway Depth

Axial Rake Angle

Cutting edge angle

Ring

N

Reference ring

Cutting edge Inclination angle

True Rake Angle

Face relief angle

Fastener Bolt

A

Cutting edge indexable Insert

Chip pocket

Flank Relief Angle

Cutter Diameter (Nominal Diameter)

Locator

Clamp Plate

Enlarged Portion A

Reference ring

Face Cutting Edge Angle

External cutting edge (principal cutting edge)

Face cutting edge (Wiper Flat)

Radial Rake Angle

Chamfered corner

■ Milling Calculation Formulas

● Calculating Cutting Speed (Inch)

Work Material

Milling Cutters

SFM = 0.262 × DC × n

v c : Cutting speed (SFM) X : π ≈3.14

n

3.82 × SFM DC

v f

n =

DC : Nominal cutting diameter (inch) n : Rotation speed (min -1 ) (RPM) v f : Feed rate per minute (inch/min) f z : Feed rate per tooth (inch/t)

n

● Calculating Feed Rate (Inch) v f = IPR × n

v f

IPR =

n

v f

f z

● Calculating power requirements 

● Relation between feed rate, work material and specific cutting force

a e × a p × v f × k c 60 × 10 6 × V

Q × k c

Symbol

P c =

=

Work Material Alloy Steel Carbon Steel Cast Iron Aluminum Alloy (1) 1.8 0.8 200 Q (2) 1.4 0.6 160 Q (3) 1.0 0.4 120 Q Figures in table indicate these characteristics. · Alloy steel and carbon steel: Traverse

60 × 10 3 × V

No.

10.000

P c : Power consumption (kw) H : Required horsepower (HP) Q : Chip evacuation amount (cm 3 /min) a e : Cutting width (mm) v f : Feed rate per minute (mm/min) a p : Depth of cut (mm) k c : Cutting force (MPa) Rough values Steel: 2,500 to 3,000MPa Cast iron: 1,500MPa Aluminum: 800MPa V : Machine efficiency (about 0.75) ( )

8.000

● Horsepower requirements

rupture strength σ B (GPa) · Cast iron: Hardness HB

P c 0.75

H =

6.000

(1)

4.000

(1) (3) (3) (2) (2)

● Chip evacuation amount

2.000

a e × a p × v f 1,000

(1) (2) (3)

Q =

0 0.1 0.04

0.2 0.4 0.6 0.8 1.0 Feed Rate (mm/t)

N53

■ Functions of cutting edge angles Material Technical Guidance The Basics of Milling

Symbol

Function

Effect

(1) (2)

Axial rake angle Radial rake angle

A.R. R.R.

Determines chip evacuation direction, adhesion, thrust, etc.

Available in positive to negative (large to small) rake angles. Typical combinations: Positive and Negative, Positive and Positive, Negative and Negative

(3) Approach angle

A.A.

Determines chip thickness and chip evacuation direction

Large: Thin chips

Small cutting force

(4) True rake angle

T.A.

Effective rake angle

Positive (Large): Excellent

machinability and low chip adhesion. Low cutting edge strength Negative (Small): S trong cutting edge and easy chip adhesion Positive (Large): Excellent chip control and small cutting force. Low cutting edge strength

N

(5) Cutting edge inclination angle

I .A.

Determines chip control direction

(6) Face cutting edge angle

F.A. Determines surface finish roughness Small: Excellent surface roughness

Determines cutting edge strength, tool life, chattering

(7) Relief angle

True rake angle (T.A.) table

Inclination angle (I.A.) chart

+30° +25° +20° +15° +10° +5° 0° -5° -10° -15° -20° -25° -30°

+30° +25° +20° +15° +10° +5° 0° -5° -10° -15° -20° -25° -30°

-30° -25° -20° -15° -10° -5° 0° +5° +10° +15° +20° +25° +30°

+30° +25° +20° +15° +10° +5° 0° -5° -10° -15° -20° -25° -30°

True rake angle T.A.

Inclination angle I.A.

+30° +25° +20° +15° +10° +5° 0° -5° -20° -25° -10° -15° -30°

-30° -25° -20° -15° -10° -5° 0° +5° +20° +25° +10° +15° +30°

(2)

1

(1)

(4)

(4)

(2)

(3)

(3)

40°45°50°55° 60° 65° 70° 75° 80° 85° 90°

40°45°50°55° 60° 65° 70° 75° 80° 85° 90°

0° 5° 10° 15° 20° 25° 30° 35°

0° 5° 10° 15° 20° 25° 30° 35°

Approach angle A.A.

Approach angle A.A.

= +10° = -30° = 60° }

= -10° = +15° = 25° }

Example:(1) A.R. (2) R.R. (3) A.A.

(Axial rake angle) (Radial rake angle) (Approach angle)

Example:(1) A.R. (2) R.R. (3) A.A.

(Axial rake angle) (Radial rake angle) (Approach angle)

-> (4) I (inclination angle) = -15°

-> (4) T.A. (True rake angle) = -8°

Formula: tan T.A.=tan R.R./cos A.A. + tan A.R./sin A.A.

Formula: tan I.R.=tan A.R./cos A.A. - tan R.R./sin A.A.

■ Rake angle combination and features

Double Positive type

Negative - Positive type

Double Negative type

Edge combination and chip evacuation A.R.: Axial rake angle R.R : Radial rake angle A.A.: Approach angle

A.A. (15 to 30°)

A.A. (15 to 30°)

A.A. (30 to 45°)

A.R.

A.R.

A.R.

Neg.

Pos.

Pos.

: Chip and evacuation direction : Cutter rotation direction

R.R. Pos.

R.R. Neg.

R.R. Neg.

Excellent chip evacuation and sharpness Only single-sided inserts can be used Machining of steel, cast iron, and stainless steel, with suitable strength and good evacuation

Economical design enabling use of both sides of insert Strong cutting edge

Advantages

Good sharpness

Only single-sided inserts with a lower cutting edge strength can be used Machining of aluminum alloy and other materials requiring sharpness

Disadvantages

Dull cutting action

For hard materials such as cast iron or poor surfaces such as castings

Applications

Cat. No.

ALNEX, HF, WAX

WGX, WFX, RSX, WEZ

TSX, DGC, DFC, DNX

Chips (Ex.)

· Part material: Alloy Steel ·  v c =430 SFM f z =.009 in./t a p =.118”

N54

Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7 Page 8 Page 9 Page 10 Page 11 Page 12 Page 13 Page 14 Page 15 Page 16 Page 17 Page 18 Page 19 Page 20 Page 21 Page 22 Page 23 Page 24 Page 25 Page 26 Page 27 Page 28 Page 29 Page 30 Page 31 Page 32 Page 33 Page 34 Page 35 Page 36 Page 37 Page 38 Page 39 Page 40 Page 41 Page 42 Page 43 Page 44

www.sumicarbide.com

Made with FlippingBook flipbook maker