Mechanochemistry: Fundamentals, applications and future

Mechanochemistry in Warsaw Karolina Opała 1 , Aleksandra Borkenhagen 1 and Janusz Lewiński 1,2 1 Institute of Physical Chemistry, Polish Academy of Sciences, Poland, 2 Faculty of Chemistry, Warsaw University of Technology, Poland We present the history of mechanochemistry developed in Warsaw and the most important milestones that significantly contributed to the development of mechanochemistry globally. The history of mechanochemistry in Warsaw began in 1967 when Urbański revealed the formation of radicals on the surface of grinded amber.[1] The next accomplishments came at the beginning of the 20th century. In 2001 a unique transformation of a dinuclear organoaluminum anthranilate to a tetra-aluminum macrocycle was encountered upon hand-grinding with a glass rod.[2] Similar glass rod grinding mediated a quantitative transformation of a cluster-like trimeric organozinc alkoxide [RZn(OR] 3 to a tetrameric cubane [RZn(OR)] 4 .[3] More recently, we reported unprecedented solvent- free slow chemistry and mechanical force triggered radical transformations involving solid homoleptic organozinc compounds and an intentionally added TEMPO as a free stable nitroxyl radical, and the results opened up a new horizon in molecular solid-state radical transformations.[4] The mentioned mechanochemical transformations on the molecular level have been extended in our group to the preparation of chiral coordination polymers,[5] isoreticular MOFs,[6] drug-loaded MOFs[7] and hybrid organic–inorganic metal halide perovskites[8] (scheme below) and to development of new and efficient methods for synthesis of semiconductor nanocrystals and their functionalization.[9] Very recently, we merged mechanochemistry and CO2 capture, highly attractive research areas in the context of green chemistry, to produce various carbonate and bicarbonate networks.[10]

References 1. Urbański, T., Nature , 1967 , 216, 577.Branch, C. S., Lewiński J., Justyniak I., et al. , Chem. Soc. Dalton Trans. , 2001 , 1253. 2. Lewiński, J., Dutkiewicz M., Lesiuk M., Śliwinski W., et al. , Chemie Int. Ed. , 2010 , 49, 8266. 3. Budny-Godlewski, K., Justyniak I., Leszczyński K. M., Lewiński, J., Sci., 2019 , 10, 7149. 4. Budny-Godlewski, K., Leszczyński K. M., Tulewicz A., et al. , ChemSusChem , 2021 , 14, 3887. 5. Prochowicz, D., Justyniak I., Kornowicz A., Kaczorowski T., et al. Eur. J., 2012 , 18, 7367. 6. Prochowicz, D., Sokołowski K., Justyniak I., Kornowicz A., et al. Comm., 2015 , 51, 4032. 7. Prochowicz, D., Nawrocki J., Terlecki M., Marynowski W., Lewinski J ., Inorg. Chem., 2018 , 57, 13437. 8. Nawrocki, J., Prochowicz D., Wiśniewski A., Justyniak I., et al. J. Inorg. Chem. , 2020 , 2020, 796. 9. Prochowicz, D., Franckevičius M., Cieślak M. A., et J. Mater. Chem. A, 2015 , 3, 20772. 10. Prochowicz, D., Saski M., Yadav P., Grätzel M., Lewiński J., Acc. Chem. Res., 2019 , 3233. 11. Krupiński, P., Kornowicz A., Sokołowski K., Cieślak M. A., Lewiński J., Eur. J. , 2016 , 22, 7817. 12. Krupiński, P. Grala A., Wolska-Pietkiewicz M., et al . ACS Sustain. Chem. Eng. 2021 , 9, 1540. 13. Leszczyński M., Kornacki D., Terlecki M., Justyniak I., et al. ACS Sustainable Chem. Eng., 2022 , 10,4374.

P51

© The Author(s), 2022

Made with FlippingBook Learn more on our blog