Calculus Volume 1

This companion book to Thinkwell's Calculus course is an optional resource to complement the video lessons in Thinkwell Calculus.


Preface
9

1. About OpenStax
9

2. About OpenStax's resources
9

3. About Calculus Volume 1
9

4. Additional resources
11

5. About the authors
12

Chapter 1. Functions and Graphs
15

1.1. Review of Functions*
16

1.2. Basic Classes of Functions*
44

1.3. Trigonometric Functions*
70

1.4. Inverse Functions*
86

1.5. Exponential and Logarithmic Functions*
104

Glossary
125

Chapter 2. Limits
131

2.1. A Preview of Calculus*
132

2.2. The Limit of a Function*
143

2.3. The Limit Laws*
168

2.4. Continuity*
187

2.5. The Precise Definition of a Limit*
202

Glossary
216

Chapter 3. Derivatives
221

3.1. Defining the Derivative*
222

3.2. The Derivative as a Function*
240

3.3. Differentiation Rules*
255

3.4. Derivatives as Rates of Change*
274

3.5. Derivatives of Trigonometric Functions*
285

3.6. The Chain Rule*
295

3.7. Derivatives of Inverse Functions*
307

3.8. Implicit Differentiation*
317

3.9. Derivatives of Exponential and Logarithmic Functions*
327

Glossary
342

Chapter 4. Applications of Derivatives
349

4.1. Related Rates*
350

4.2. Linear Approximations and Differentials*
362

4.3. Maxima and Minima*
374

4.4. The Mean Value Theorem*
387

4.5. Derivatives and the Shape of a Graph*
398

4.6. Limits at Infinity and Asymptotes*
415

4.7. Applied Optimization Problems*
447

4.8. L’Hôpital’s Rule*
462

4.9. Newton’s Method*
480

4.10. Antiderivatives*
493

Glossary
507

Chapter 5. Integration
515

5.1. Approximating Areas*
516

5.2. The Definite Integral*
537

5.3. The Fundamental Theorem of Calculus*
557

5.4. Integration Formulas and the Net Change Theorem*
574

5.5. Substitution*
592

5.6. Integrals Involving Exponential and Logarithmic Functions*
603

5.7. Integrals Resulting in Inverse Trigonometric Functions*
616

Glossary
624

Chapter 6. Applications of Integration
631

6.1. Areas between Curves*
632

6.2. Determining Volumes by Slicing*
644

6.3. Volumes of Revolution: Cylindrical Shells*
664

6.4. Arc Length of a Curve and Surface Area*
679

6.5. Physical Applications*
693

6.6. Moments and Centers of Mass*
711

6.7. Integrals, Exponential Functions, and Logarithms*
729

6.8. Exponential Growth and Decay*
742

6.9. Calculus of the Hyperbolic Functions*
753

Glossary
764

Appendix A. Table of Integrals*
771

A.1. Basic Integrals
771

A.2. Trigonometric Integrals
771

A.3. Exponential and Logarithmic Integrals
773

A.4. Hyperbolic Integrals
773

A.5. Inverse Trigonometric Integrals
773

A.6. Integrals Involving a2 + u2, a > 0
774

A.7. Integrals Involving u2 − a2, a > 0
774

A.8. Integrals Involving a2 − u2, a > 0
775

A.9. Integrals Involving 2au − u2, a > 0
775

A.10. Integrals Involving a + bu, a ≠ 0
776

Appendix B. Table of Derivatives*
777

B.1. General Formulas
777

B.2. Trigonometric Functions
777

B.3. Inverse Trigonometric Functions
777

B.4. Exponential and Logarithmic Functions
778

B.5. Hyperbolic Functions
778

B.6. Inverse Hyperbolic Functions
778

Appendix C. Review of Pre-Calculus*
779

C.1. Formulas from Geometry
779

C.2. Formulas from Algebra
779

C.3. Formulas from Trigonometry
780

Solutions
783

Chapter 1
783

Chapter 2
797

Chapter 3
806

Chapter 4
823

Chapter 5
835

Chapter 6
852

Index
873

CalculusVolume1.pdf
2

Blank Page
2

Made with FlippingBook - professional solution for displaying marketing and sales documents online